Lycée Gustave Eiffel Nombres Complexes Exercice 3. Équations

(32 )(2+3 )
2 +
3
2 +
22 +
1+2
3+2
(2 )3
(1 + 2 )4
7
X
k=0
(2 )k
52 2097 2001 314
zC
2z+ (2 + )¯z= 2
(3 + 2 )z+ (3 )¯z= 3 + 4
(1 + )z+ (1 )¯z= 3
(2 + 3 )z+ (2 3 )¯z= 3
(1 + 2 )z+ (2 1)¯z= 2
(1 + )z¯z+ 2¯z= 0
(1 + )z¯z+ (4 2)z4 + 4 = 0
zR
(1 + )z+ (1 )¯z
z+ 2 z+ ¯z+ 2 ¯z
3z2+z2¯z2+ 3¯z2
5z2+ 5z2+ 10¯zz 5 ¯z2+ 5¯z2
z3+z2¯z+z+ ¯z+z¯z2+ ¯z3
2z3¯z3+z4¯z2+z3¯z+z2¯z4+ 2z2¯z2+z¯z3+z¯z
z3+z2¯z+z+z¯z3+z¯z2¯z+ ¯z
z
2z1
z2z= ¯z z + ¯z= 2z¯z
z
2z1
z2
(u, v)C2
|u+v|2+|uv|2= 2 |u|2+|v|2
a b
a
|a|2b
|b|2
=|ab|
|a||b|
1
a1z6= 1 1 + a
1aR
zR1 + z
1z1
a b 1ab 6=1
a+b
1 + ab R
a b a¯
b6= 1 z=ab
1a¯
b
|z|= 1 ⇒ |a|= 1 |b|= 1
zC
z+1
zR(zR|z|= 1)
(|z|= 1 z6= 1) xRz=x+
x1
zRz2− |z|2= 0
1
a b c 1
|ab +ac +bc|=|a+b+c|
n
nNz1, . . . , znn1
z= n
X
k=1
zk! n
X
k=1
1
zk!0zn2
tRAcos(ωt +ϕ)
AR+ωR+
cos(t) + 3 sin(t) 3 cos(2t)3 sin(2t)
sin(2a) cos(2a)
sin(3a) cos(2a)
cos(5a)
sin(4a)
xR
sin(2x) + sin(3x) + sin(4x)=0
cos(2x) + cos(4x) + cos(6x)=0
sin(3x) + 4 sin2(x)sin(x)2=0
2 cos3(x)3 cos(2x) + cos(3x)=0
xR
sin2(x) cos3(x)
sin3(x)
sin5(x) +
cos4(x) sin(x)
sin2n(x)nN
sin2n+1(x)nN
n
X
k=1
cos(kx)
n
X
k=1
sin(kx)
n
X
k=1
kcos(kx)
n
X
k=1
cosk(x) cos(kx)
n
X
k=1
cosk(x) sin(kx)
n
X
k=0 n
kcos(kx)
n
X
k=0 n
ksin(kx)
n
n
X
k=0 n
kcos(a+kx)=0
n1
X
k=0
cos(kx)
cosk(x)= 0
nN
1
1
2
2
3+3
(1 3)11
33
3+2 !32
(1 + )25
1
14
3
1!n
1 + eθ
(1 + eθ)n
1 + 2 +
2 + 3!n
(1 + tan(α))2
1 + tan2(α)
1sin(θ) + cos(θ)
1sin(θ)cos(θ)
eθeθ0
(1 + )n(1 )n
q2 + 2+ q22
θ
cos( π
12) sin( π
12) tan( π
12)
cos( π
12) sin( π
12) tan( π
12)
z= 1 + z0=3 +
z z0z
z0
cos( π
12) sin( π
12)
zC
z= 2 π
3
2z= 3 π
8
2z+z+ 1 = 0
3z22z+ 2 z= 0
3+4
1+43724
2π
6
72 π
8
2+23
C
z2+ (2 3 )z1 + 5 = 0
z2+ (1 + 8 )z17 + = 0
z2+ (4 3)z+5=0
z4(7 + 7 )z2+ 25 = 0
z2
z12
(3 + 2 ) z2
z1+ 3 1=0
z+ 1
z22
(1 + 2 ) z+ 1
z2+1=0
z3+ (3 + 2 )z2+ (15 )z+ 6 + 2 = 0
z3+ (1 + )z2+ (4 )z+ (12 6 ) = 0
z3(4 + 9 )z2+ (18 + 31 )z(18 + 39 ) = 0
z4+ 2(1 + )z3+ 3 z2+ (1 + )z2(1 + 3 )
2z46z3+ 9z26z+ 2 = 0 1 +
nN
(z+ 1)n= (z1)nzn= (1 + z)n27(z1)6(z+ 1)6= 0
απ
2< α < π
2
1 + z
1z4
=1 + tan(α)
1tan(α)
z+ 1
z1n
+z1
z+ 1n
= 1
3
P P (X) = X3+ 3X10
zCP
u v P (u+v) = 0
uv =1z=u+v
u v P (u+v) = 0 uv =1
u3+v3
u3v3
(u, v)
CP(z)=0 zC
A B C 365 3 4
ABC
A B C a b c
g G ABC
h H ABC a b
c
G H a +b+c= 0
G H
1
a+1
b+1
c
b
a+c
a
bc
a2
b c a
ABC
ABCD A0B0C0D0
[AB] [BC] [CD] [DA]A0B0C0D0
z
1z1 + z2
z z2z3z
A B C
a b c ABC
a2+b2+c2(ab +bc +ca) = 0
a b θ
zarg za
zb=θ[π]
F M z C\ {−13}
M0
z0=z+7
23
z+ 1 + 3
F
M
|z0|= 1
z0R
IC\ {0}C\ {0}I(z) = 1
zD
CCA a r
06∈ D
b D
|z|=|zb|
I(D)
0D I(D)
06∈ C I(C)
0∈ C I(C)
a r
z0= (1 )z+ 2
z0= (3 + )z+ 3 + 3 (1 3)
z0=π
4z+
z0=1 + i
1 + 3z+ 1 3 + (3 3)
2
π
3 1 + 2
θ1Rθ2R1ω12
ω2r11θ1r2θ2
r=r1r2
r
r
T
z0= (1 + )zzCM M0M0=T(M)
T
A T
AMM0
D0D y =x T
B A
z0B z0
0B0=T(B)z0z0
0= 1
A0A O
A A0B B0
A B 1O
M z A B M1M2
BM M1AM M2
(
M1B,
M1M)=(
M2M,
M2A) = π
2
z1z2M1M2
M1M2M T1
T2M
M OM1M2
OM1=OM2M(∆)
OM1=M1M2M(Γ)
M OM1M2
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !