Chapitre 8
!
!
LOI NORMALE
!
La loi normale est obtenue lorsqu’on repète plusieurs fois et de façon identique et
indépendante la même expérience aléatoire suivant la même loi uniforme sur un intervalle donné.
La loi normale permet de modéliser des situations du type analyse de qualité d’une
production industrielle.
Fonction de densité de la loi normale
Définition
Soient ! et !deux réels, tels que !
La loi normale N! d’espérance ! et d’écart-type !est la loi de densité dont la fonction de
densité est la fonction f définie sur ! par :
!
!
Calculs de probabilités
Propriété
Soit X la variable aléatoire suivant la loi normale N!et
soit ! un intervalle. La probabilité de l’événement
« ! » est l’aire du domaine colorié ci-contre, c’est-à-
dire :
!
f est la fonction de densité définie ci-dessus.
!
!
!
!
!
µ
σ
σ
>0.
µ
;
σ
( )
µ
σ
!
f x
( )
=1
σ
2
π
e1
2
x
µ
σ
2
µ
;
σ
( )
α
;
β
[ ]
X
α
;
β
[ ]
!1
Chapitre 8 : Exemples de lois à densité
Exemples de lois à densité
III.
Remarque :
De manière générale on ne sait pas calculer l’intégrale ci-dessus. Néanmoins nous pourrons
calculer des probabilités grâce, d’une part, aux propriétés suivantes, et d’autre part grâce à la
calculatrice qui peut calculer des probabilités de type ! dans le cadre d’une loi
normale (! et ! doivent être des nombres, pas des !).
!
Propriété
Soit X la variable aléatoire suivant la loi normale N! de fonction de densité f. Alors :
la courbe représentative de f est symétrique par rapport à la droite D d’équation !et l’aire
entre cette courbe et l’axe des abscisses est finie et égale à 1.
!
Propriété
!
!
! !
! !
!
!
! !
! !
!
!
!
!
P X
α
;
β
[ ]
( )
α
β
µ
;
σ
( )
x=
µ
P X
µ
( )
=P X
µ
( )
=0,5
P X
µ
( )
=0,5
P X
µ
( )
=0,5
P X
β
( )
=0,5 +P X
µ
;
β
[ ]
( )
P X
β
( )
=0,5 P X
β
;
µ
] ]
( )
!2
Chapitre 8 : Exemples de lois à densité
Pour calculer ! sur calculatrice :
!
Exercice 3
On note X la variable aléatoire qui suit la loi normale d’espérance ! et d’écart-type !. Déterminer
la valeur arrondie à ! près de :
! ! !
!
!
Espérance et écart-type
!
Propriété
Soit X une variable aléatoire suivant la loi normale N!.
L’espérance de X est : !.
L’écart-type de X est : !.
!
!
Intervalle « un, deux, trois sigmas »
!
Propriété
Soit X une variable aléatoire suivant la loi normale N!.
!! près)
!! près)
!! près)
!
P X
α
;
β
[ ]
( )
Sur TI
Il faut écrire NormalFrep!.
On trouve NormalFrép en suivant les
instructions suivantes :
2nde - Var - 2:NormalFrep
α
,
β
,
µ
,
σ
( )
Sur Casio
Menu STAT - DIST - NORM - Ncd
Lower : !
Upper : !
!: …
!: …
α
β
σ
µ
µ
=1, 5
σ
=0,01
103
P1, 47 X1,53
( )
P X <1, 49
( )
P X 1,52
( )
µ
;
σ
( )
E X
( )
=
µ
σ
X
( )
=
σ
µ
;
σ
( )
P
µ
σ
X
µ
+
σ
( )
0,68
102
P
µ
2
σ
X
µ
+2
σ
( )
0,95
102
P
µ
3
σ
X
µ
+3
σ
( )
0,997
103
!3
Chapitre 8 : Exemples de lois à densité
!
!
!
!
!
!
!
!
Exercice 4
Une entreprise fabrique en grande quantité des tiges métalliques. On appelle X la variable aléatoire qui, à
chaque tige prélevée au hasard dans la production, associe sa longueur en millimètres. On suppose que X suit
une loi normale d’espérance 100 et d’écart-type !. On admet que la probabilité qu’une tige prélevée au hasard
ait une longueur comprise entre 98 et 102 mm est 0,95. !
Quelle est la valeur de !?
!
!
LOI BINOMIALE ET LOI NORMALE
!
Rappels sur la loi binomiale
!
!
Définition
Une épreuve de Bernoulli est une expérience aléatoire n’ayant que deux issues possibles,
généralement appelées succès (de probabilité p) et échec (de probabilité !).
!
Exemple
Le succès est l’événement : « le feu est vert »
L’échec est l’événement : « le feu n’est pas vert (orange ou rouge) »
Remarque : cela aurait pu être le contraire, on peut considérer que le succès est « le feu est rouge »… ce n’est
qu’une question de vocabulaire.
!
Définition
On considère la répétition de n épreuves de Bernoulli identiques et indépendantes (on appelle cela
un schéma de Bernoulli) et on note p la probabilité du succès.
σ
σ
1p
!4
Chapitre 8 : Exemples de lois à densité
IV.
Soit X la variable aléatoire qui compte le nombre de succès : on dit alors que X suit la loi binomiale
de paramètres n et p. On note cette loi B(n ; p).
!
Savoir- faire : déterminer les paramètres d’une loi binomiale.
Il suffit de recopier le paragraphe suivant en l’adaptant à l’exercice :
Il s’agit de la répétition de …… épreuves de Bernoulli identiques et indépendantes, donc d’un
schéma de Bernoulli.
Le succès est l’événement : !: « ….. »!
Sa probabilité est !
L’échec est l’événement : !: « ….. »!
Sa probabilité est : !
X est la variable aléatoire qui compte le nombre de ………….. (nombre de succès). X suit donc la
loi binomiale B!
!
Propriété
Soit X la variable aléatoire suivant la loi binomiale B.
Alors pour tout entier k compris entre 0 et n, la probabilité d’obtenir k succès parmi les n essais est
donnée par la formule suivante :
!
!
Remarque :
Cette formule permet d’écrire la valeur exacte de la probabilité recherchée mais le résultat de ce
calcul s’obtient à la calculatrice de la façon suivante :
On obtient également à la calculatrice les probabilités de type ! en choisissant, sur Casio,
Bcd à la place de Bpd, et sur TI, BinomFrep à la place de BinomFdp.
!
Propriété
Soit X une variable aléatoire suivant la loi binomiale B.
L’espérance de X est : !.
L’écart-type de X est :! .
!
S
p=..........
S
1p=.........
.........;.........
( )
n,p
( )
P X =k
( )
=n
k
pk1p
( )
nk
P X k
( )
n,p
( )
E X
( )
=n×p
σ
X
( )
=np 1p
( )
!5
Chapitre 8 : Exemples de lois à densité
Casio
TI
Menu STAT - DIST - BINM - Bpd
MATH - PRB - BinomFdp
Data : Variable!
x : valeur du X dans la parenthèse!
NumTrial : nombre n de répétitions!
p : probabilité p du succès
BinomFrep (n , p , x)!
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !