π−a π +a−aπ
2−aπ
2+a a
cos(π−a) = −cos(a) cos(π
2−a) = sin(a) cos(−a) = cos(a)
sin(π−a) = sin(a) sin(π
2−a) = cos(a) sin(−a) = −sin(a)
cos(π+a) = −cos(a) cos(π
2+a) = −sin(a)
sin(π+a) = −sin(a) sin(π
2+a) = cos(a)
ABCD b h A(ABE)
A(ABCD) = bh H E (AB)
AHE ADE BHE BCE
A(ABE) = A(AHE) + A(BHE) = (A(AHE) + A(ADE) + A(BHE) + A(BCE))/2
=A(ABCD)/2 = bh/2.
a=AE b =BE c =AB ABE EF
c2= (b−a)2+ 2ab
A(ABE) = ab/2EF =b−a
c2=A(ABCD) = 4 × A(ABE) + EF 2= 2ab + (b−a)2=a2+b2.
ABE E
Y AA1Y BB1
AA1
Y A1=BB1
Y B1y Y
y a b
a AA1=y−sin(a)Y A1= cos(a)BB1= sin(b)−y
Y B1= cos(b)
y−sin(a)
cos(a)=sin(b)−y
cos(b)⇐⇒ y×(cos(a) + cos(b)) = sin(a) cos(b) + sin(b) cos(a).
OY A(OY A)A(OY B) cos(a) cos(b)y
A(OY A) = ycos(a)/2A(OY B) = ycos(b)/2
OAB OB
OAB OB OA ×sin(a+b)OA =OB = 1
sin(a+b) = 2 × A(OAB) = 2(A(OY A) + A(OY B))
=y(cos(a) + cos(b)) = sin(a) cos(b) + sin(b) cos(a)
sin(x) 0 x0
cos(x) 1 x0
0≤ |sin(x)| ≤ |x|x∈]−π
2,π
2[ limx→0|sin(x)|= 0
limx→0sin(x) = 0 (cos x)2= 1 −(sin x)2
limx→0(cos x)2= 1 cos x x ∈[−π
2,π
2] cos x=p(cos x)2
limx→0cos(x) = √12= 1