Chapitre 5 : Lois Discrètes Usuelles

publicité
Chapitre 5 : Lois Discrètes Usuelles
L2 Eco-Gestion, option AEM
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
1 / 25
Joseph Bertrand (1900)
Comment oser parler des lois du hasard ? Le hasard n’est-il pas
l’antithèse de toute loi ?
Motivation
Modéliser des phénomènes aléatoires par des modèles théoriques
connus.
Intérêt : les modèles théoriques permettent de faire des calculs, de
prédire, etc.
Limite : on fait une approximation de la réalité
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
2 / 25
Plan
1
Epreuve de Bernoulli, loi binomiale
2
Loi hypergéométrique
3
Loi géométrique et loi de Pascal
4
Loi de Poisson
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
3 / 25
Plan
1
Epreuve de Bernoulli, loi binomiale
2
Loi hypergéométrique
3
Loi géométrique et loi de Pascal
4
Loi de Poisson
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
4 / 25
Epreuve de Bernoulli, loi binomiale
Epreuve de Bernoulli
Définition
Une épreuve de Bernoulli est une expérience aléatoire ayant deux issues :
le succès S, avec une probabilité p ;
l’échec E, avec une probabilité q = 1 − p.
On définit une variable aléatoire de Bernoulli en posant
1 si succès
X=
0 si échec
Exemple
Une urne contient 6 boules rouges et 18 boules noires. On considère
l’évènement S=”tirer une boule rouge.”
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
5 / 25
Epreuve de Bernoulli, loi binomiale
Epreuve de Bernoulli
Remarque
P(X = 1) = p
P(X = 0) = 1 − p
On dit que X sui la loi de Bernoulli de paramètre p, et on note X ∼ B(p).
La loi de probabilité de X est donnée par
Propriétés de la variable de Bernoulli de paramètre p
E(X ) = p
Var(X ) = p(1 − p)
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
6 / 25
Epreuve de Bernoulli, loi binomiale
Loi binomiale
Définition
On considère un schéma de Bernoulli de paramètres n et p, c’est-à-dire
la répétition de n épreuves de Bernoulli indépendantes de paramètre p
(avec n ∈ N∗ et 0 < p < 1).
On définit alors la v.a. X associée au nombre de succès obtenus.
On dit que X suit la loi binomiale de paramètres n et p, et on note
X ∼ B(n, p).
Remarque
Soient X1 , X2 ,..., Xn les variables de Bernoulli respectives des n épreuves.
Alors X = X1 + X2 + ... + Xn et B(p) = B(1, p).
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
7 / 25
Epreuve de Bernoulli, loi binomiale
Loi binomiale
Propriété (calcul de la loi de probabilité)
La loi de probabilité d’une v.a. X suivant la loi binomiale B(n, p) est
donnée par :
P(X = k) = Cnk p k (1 − p)n−k
k ∈ {0, 1, 2..., n}
Paramètres de position et de dispersion
Si X ∼ B(n, p) :
E(X ) = np
Var(X ) = np(1 − p)
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
8 / 25
Epreuve de Bernoulli, loi binomiale
Loi binomiale
Propriété (somme de deux v.a. binomiales)
Si X ∼ B(n1 , p) et Y ∼ B(n2 , p) et si X et Y sont deux variables
aléatoires indépendantes, alors X + Y ∼ B(n1 + n2 , p)
Remarque
Deux v.a. X et Y définies sur le même espace (Ω, P(Ω), P) sont
indépendantes si les évènements qu’elles engendrent sont indépendants.
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
9 / 25
Plan
1
Epreuve de Bernoulli, loi binomiale
2
Loi hypergéométrique
3
Loi géométrique et loi de Pascal
4
Loi de Poisson
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
10 / 25
Loi hypergéométrique
En pratique, les n épreuves de Bernoulli successives sont rarement
indépendantes...
Exemple
Une entreprise commercialise un lot de N bouteilles d’eau minérale et
affirme que seulement 15 % de ces bouteilles ont un taux en nitrate
supérieur à 10 mg/L.
Pour contrôler la qualité annoncée, on prélève un échantillon de n
bouteilles du lot (n ≤ N) et on analyse leur composition.
Bien sûr une bouteille analysée est ouverte. Elle ne peut donc pas être
remise dans le lot...
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
11 / 25
Loi hypergéométrique
Que faire dans ce cas ?
Si N est largement supérieur à n, la probabilité p est “quasi-constante”.
On fait l’approximation que p est constante. On choisit donc une loi
binomiale (mais qui est une approximation de la réalité).
Si on veut être plus précis, on calcule explicitement la loi !
Cette loi s’appelle la loi hypergéométrique.
Définition : loi hypergéométrique
On considère une population de taille N dont N1 individus exactement
présentent un certain caractère A. On prélève sans remise un échantillon de
n individus. Soit X la v.a. du nombre d’individus présentant le caractère A
dans l’échantillon.
On dit que X suit la loi hypergéométrique de paramètres N, n et NN1 :
X ∼ H (N, n, NN1 ).
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
12 / 25
Loi hypergéométrique
Propriété : loi de probabilité
Si X ∼ H (N, n, NN1 ), la loi de probabilité de X est donnée par :
P(X = k) =
n−k
CNk 1 CN−N
1
CNn
avec max(0; n − (N − N1 )) ≤ k ≤ min(n, N1 ).
Application
Il y a 10 mauvaises vis dans une boîte de 100. On en prend 4 au hasard d’un
seul. Quelle est la probabilité d’avoir 0 mauvaises vis ? d’en avoir 1 ? 2 ? ...
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
13 / 25
Loi hypergéométrique
Paramètres de position et de dispersion
Si p =
N1
N
E(X ) = np
Var(X ) = np(1 − p)( N−n
N−1 )
Remarques
...
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
14 / 25
Plan
1
Epreuve de Bernoulli, loi binomiale
2
Loi hypergéométrique
3
Loi géométrique et loi de Pascal
4
Loi de Poisson
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
15 / 25
Loi géométrique et loi de Pascal
Loi géométrique
Description de l’expérience
Comme pour le schéma de la loi binomiale, on considère des épreuves
de Bernoulli indépendantes et de paramètre p.
Le nombre d’épreuves n’est pas fixé à l’avance : on s’arrête lorsque le
succès est obtenu pour la première fois.
Ainsi, le caractère aléatoire n’est pas le nombre de succès, mais le
nombre d’épreuves :
X =”nombre d’épreuves nécessaires au 1er succès”.
Définition : loi géométrique
Si X est une v.a. à valeurs dans N∗ telle que décrite ci-dessus, on dit que X
suit une loi géométrique de paramètre p : X ∼ G (p).
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
16 / 25
Loi géométrique et loi de Pascal
Loi géométrique
Propriété (loi géométrique)
Si X ∼ G (p), alors P(X = k) = p × (1 − p)k−1 (pour tout k ∈ N).
Paramètres descriptifs
Si X ∼ G (p) :
E(X ) =
1
p
Var(X ) =
1−p
p2
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
17 / 25
Loi géométrique et loi de Pascal
Loi de Pascal
Remarques
La loi de Pascal est parfois appelée loi binomiale négative.
C’est une généralisation de la loi géométrique.
Description de l’expérience
Comme pour le schéma de la loi binomiale, on considère des épreuves
de Bernoulli indépendantes et de paramètre p.
on définit la v.a. X comme étant le nombre d’épreuves nécessaires à k
succès. On dit que X suit la loi de Pascal de paramètres k et p.
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
18 / 25
Loi géométrique et loi de Pascal
Loi de Pascal
Propriété
Si X ∼ P(k, p), alors pour N ≥ k : P(X = N) =
N−1
k−1
k
p (1 − p)N−k
Paramètres descriptifs
Si X ∼ P(k, p) :
E(X ) =
k
p
Var(X ) =
k(1−p)
p2
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
19 / 25
Exemple du gardien de nuit
Un gardien de nuit doit ouvrir une porte dans le noir, avec 10 clefs dont
une seule est la bonne. Soit X la variable aléatoire qui compte le nombre
d’essais jusqu’à ce que la porte s’ouvre.
1
Il met de côté celles qu’il a déjà essayées. Quelle est la loi de
probabilité de X ? Calculer l’espérance ainsi que la variance. Donner la
probabilité de réussir en moins de 8 coups.
2
Lorsqu’il est ivre, il n’isole pas les clefs essayées et donc les mélanges à
chaque fois. Il tire à chaque fois une nouvelle clef au hasard entre les
10. Quelle est la loi de probabilité ? Donner la probabilité de réussir en
moins de 8 coups
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
20 / 25
Plan
1
Epreuve de Bernoulli, loi binomiale
2
Loi hypergéométrique
3
Loi géométrique et loi de Pascal
4
Loi de Poisson
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
21 / 25
Loi de Poisson
Définition
Définition
On dit que la v.a. X suit la loi de Poisson de paramètre λ > 0 si et
seulement si, pour tout k ∈ N :
P(X = k) =
λ k −λ
e
k!
On note X ∼ P(λ ).
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
22 / 25
Loi de Poisson
Approximation de la loi binomiale par la loi de Poisson
Théorème d’approximation
Pour n assez grand et p proche de 0, la loi binomiale B(n, p) peut être
approximée par la loi de Poisson P(λ ), avec λ = np.
Preuve
...
Propriété
Si X ∼ P(λ ), alors P(X = k) = λk P(X = k − 1), pour tout k ≥ 1.
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
23 / 25
Loi de Poisson
Applications
En pratique
On fait l’approximation lorsque n ≥ 100 et p ≤ 0, 1.
Remarque
La loi de Poisson est aussi appelée loi des évènements rares.
Applications
nombre de pièces défectueuses dans un lot important où la probabilité
de pièces défecteuses est faible ;
nombre de naissances multiples parmi un grand nombre de naissances ;
statistiques d’accidents ;
...
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
24 / 25
Loi de Poisson
Applications ; Paramètres descriptifs
Exemple
Une urne contient 1 boule blanche et 99 boules noires. On fait 300 tirages
avec remise. On considère X la v.a. égale au nombre de fois que l’on a tiré
la boule blanche.
Paramètres descriptifs
Si X ∼ P(λ ) :
E(X ) = λ
Var(X ) = λ
(L2 Eco-Gestion, option AEM)
Chapitre 5 : Lois Discrètes Usuelles
25 / 25
Téléchargement