un=n!
nnvn=(1)n
(1)nn+ ln nwn= sin (1)n
n
xn=(ln n)α
nαRyn= (1)n(ln n)α
nαR
un+1
un=(n+ 1)! nn
n!(n+ 1)n+1 =nn
(n+ 1)n=1 + 1
n+ 1n
=enln(1+1/(n+1)) 1/e
1/e < 1
vn=(1)n
(1)nn+ ln n=1
n
1
1 + ln n
(1)nn1
n
1/n vn
wn= (1)nsin(1/n)an= sin(1/n) sin
[0, π/2] sin 0 = 0
wn
an=(ln n)α
nf(t) = (ln t)α
tt>CαCα
α ann
ynαR
Z+
0
sin t
et1dt Z1
1
dt
11t2Z+
1
ln(1 + 1/t)
(t21)αdt (αR)
0et= 1 + t+o(t) limt0sin t
et1= limt0t
t= 1
t7→ sin t
et10
+sin t
et11
et1tR+1
et11
et+
+t7→ sin t
et1
t7→ sin t
et1[0,+[
t7→ 1/(1 1t2)
Z1
1
dt
11t2= 2 Z1
0
dt
11t2
0
1
11t2=1
1(1 1
2t2+o(t2)) 1
t2
t7→ 1/t20
1t= 1 + u((t1)(t+ 1))α
ln(1 + 1/(1 + u))
uα(u+ 2)αln 2
2αuα
u7→ 1/uα0α < 1
α1α < 1
+(t21)αt2αln(1 + 1/t)1/t
ln(1+1/t)
(t21)α1/t2α+1 +
2α+ 1 >1α > 0
t7→ ln(1+1/t)
(t21)α[1,+[α]0,1[
(fn)nN[0,1]
t[0,1], fn(t) = (1 t2)n.
(fn)f
[0,1]
[ε, 1] ε]0,1[
lim
n+Z1
0
(1 t2)ndt = 0.
(gn)
x[1,1], gn(x) = Rx
0(1 t2)ndt
R1
0(1 t2)ndt .
gn
nN,1
2(n+ 1) Z1
0
(1 t2)ndt
t(1 t2)n(1 t2)n[0,1]
nN,x[1,1],|gn(x)1| ≤ 2(n+ 1)(1 x2)n
(gn)
(gn) [ε, 1] ε]0,1[
nNx[1,1] hn(x) = Rx
0gn(t)dt (hn)
[1,1] x7→ |x|
0fn(0) = 1 nNlimn+fn(0) = 1
t]0,1] |1t2|<1 limn+fn(t) = 0
(fn)f[0,1]
f(t)=1 t= 0
f(t)=0 t]0,1]
(fn)
f0
[0,1]
ε]0,1[
nNfn[0,1]
sup
[ε,1] |fn|= (1 ε2)n
|(1 ε2)|<1 limn+sup[ε,1] |fn|= 0
(fn) 0 = f|[ε,1] [ε, 1]
ε]0,1[
Z1
0
(1 t2)ndt =Zε
0
fn(t)dt
| {z }
+Z1
ε
fn(t)dt
| {z }
I1I2
I1t[0, ε]|fn(t)| ≤ 1|I1| ≤ ε
I2(fn) 0
[ε, 1]
lim
n+Z1
ε
fn(t)dt =Z1
ε
lim
n+fn(t)dt =Z1
ε
0dt = 0
NNnN|I2| ≤ ε
NNnN
Z1
0
(1 t2)ndt≤ |I1|+|I2| ≤ 2ε
ε]0,1[ limn+R1
0(1 t2)ndt = 0
t7→ (1t2)ngn
nNt[0,1] t(1 t2)n(1 t2)n
[0,1] Z1
0
t(1 t2)ndt Z1
0
(1 t2)ndt
Z1
0
t(1 t2)n=(1 t2)n
2(n+ 1) 1
0
=1
2(n+ 1)
1
2(n+ 1) Z1
0
(1 t2)ndt
nNx[1,1]
|gn(x)1|=Rx
0(1 t2)ndt
R1
0(1 t2)ndt 1
=Rx
0(1 t2)ndt R1
0(1 t2)ndt
R1
0(1 t2)ndt
=R1
x(1 t2)ndt
R1
0(1 t2)ndt
2(n+ 1) Z1
x
(1 t2)ndt
2(n+ 1)(1 x) sup
[x,1]
fn= 2(n+ 1)(1 x)(1 x2)n
2(n+ 1)(1 x2)n
nN,x[1,1],|gn(x)1| ≤ 2(n+ 1)(1 x2)n
x= 0 gn(0) = 0 nlimn+gn(0) = 0
x > 0|1x2|<1 limn+2(n+ 1)(1 x2)n= 0
limn+|gn(x)1|= 0
gn(gn)
g[1,1]
g(t) = 1t[1,0[
g(t)=0 t= 0
g(t)=1 t]0,1]
ε]0,1[
nN
sup
[ε,1] |gn1| ≤ 2(n+ 1) sup
x[ε,1]
(1 x2)n= 2(n+ 1)(1 ε2)n
|1ε2|<1 limn+(sup[ε,1] |gn1|) = 0
(gn) [ε, 1]
hn
[0,1] [1,1]
hn
nNsupx[0,1] |hn(x)x|(1 t2)n0t
[0,1] gn(x)1x[0,1] x7→ |hn(x)x|
x= 1
sup
x[0,1] |hn(x)x|= 1 hn(1) = Z1
0
1gn(t)dt
lim+(hn(1) 1) = 0
(hn) [1,1] x7→ |x|
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !