un=Rπ/4
0tannxdxvn=R+
0
dx
xn+ex
n+
In=Z+
0
xn
1 + xn+2 dx
un=R+
0
sinnx
x2dx un=R+
0
xndx
xn+2+1 un=R+
0
xndx
x2n+1
un=Z+
0
sin(nt)
nt +t2dt
lim
n+Z+
0
etsinn(t) dt
Z+
−∞ 1 + t2
nn
dt
n+Z+
−∞
et2dt
un= (1)nZ+
0
dt
(1 + t3)n
n1
lim
n+Z+
0
dt
(1 + t3)n
un
fn
fn(x) = ln(1 + x/n)
x(1 + x2)
R
+
un=nR+
0fn(x) dx
f: [0 ; +[C
f+`
n+
µn=1
nZn
0
f(t) dt
f∈ C0(R+,R+)nN
In=Z+
0
nf(t)ent dt
Inn+
f:R+R
n+
Z+
0
nf(x)
1 + n2x2dx
f:R+RC1
x > 0
lim
n+Z+
0
ncos t(sin t)nf(xt) dt
lim
n+Zn
01t2
nn
dt
lim
n+Zn
01 + x
nne2xdx
Zn
0r1 + 1x
nndx
lim
n+Zn
0cos x
nn2
dx
lim
n+Z+
0
n!
Qn
k=1 (k+x)dx
FR R −∞
0 +h δ 0< h < δ
In=Z1
0
Fn(δt h)dt
Sn=
n1
X
k=0
Fnδk+ 1
nh
Snn+
fC1[a;b] 0 <a<1< b f(1) 6= 0
(fn)
fn(x) = f(x)
1 + xn
(fn)
lim
n+Zb
a
fn(t) dt=Z1
a
f(t) dt
Z1
a
tn1fn(t) dtln 2
nf(1)
nNxR
fn(x) = n
π1x2
2n22n4
gR[a;b]
lim
n+ZR
fn(x)g(x) dx=g(0)
f: [0 ; 1] Rf(1) 6= 0
n
In=Z1
0
tnf(t) dt
f: [a;b]R+
nN
(x0, . . . , xn) [a;b]
iJ1 ; nK,Zxi
xi1
f(x) dx=1
nZb
a
f(x) dx
g: [a;b]R+
lim
n+
1
n
n
X
i=1
g(xi)
a b (an) (bn)
a0=a, b0=bnN, an+1 =an+bn
2, bn+1 =panbn
(an) (bn)
M(a, b)
T(a, b) = Z+
−∞
du
p(a2+u2)(b2+u2)
Ta+b
2,ab=T(a, b)
u=1
2tab
t
T(a, b) = π
M(a, b)
In=Z+
0
dx
(1 + x3)nnN
(In)n1
P(1)n1In
[0 ; π/4[ tannxCV S
0|tannx| ≤ 1 = ϕ(x) [0 ; π/4[
unZπ/4
0
0 dx= 0
[0 ; +[1
xn+ex
CV S
f(x)f(x)=ex[0 ; 1[ f(x)=0
]1 ; +[
1
xn+exex=ϕ(x)ϕ[0 ; +[
vnZ1
0
exdx=e1
e
In=Z1
0
xn
1 + xn+2 dx+Z+
1
xn
1 + xn+2 dx
InZ+
1
dx
x2= 1
[0 ; +[
|sin x|ϕ(x)=1/x2
]0 ; +[
un=Z+
0
sinnx
x2dx=Z1
0
sinnx
x2dx+Z+
1
sinnx
x2dx
Z1
0
sinnx
x2dxZ1
0sinn2(x)dx|sin x|≤|x|
Z1
0sinn2(x)dx0
Z1
0
sinnx
x2dx0
Z+
1
sinnx
x2dxZ+
1
|sin x|n
x2dx
|sin x|n
x2
CS
f(x)f(x)=0 x6=π/2 [π]
|sin x|n
x21
x2=ϕ(x)ϕ[1 ; +[
Z+
1
|sin x|n
x2dxZ+
1
f(x) dx= 0
un0
un=Z1
0
xndx
xn+2 + 1 +Z+
1
xndx
xn+2 + 1
Z1
0
xndx
xn+2 + 1Z1
0
xndx=1
n+ 1
Z+
1
xndx
xn+2 + 1
n+Z+
1
dx
x2= 1
xn
xn+2+1 1
x2[1 ; +[
un1
un=Z1
0
xndx
x2n+ 1 +Z+
1
xndx
x2n+ 1
Z1
0
xndx
x2n+ 1Z1
0
xndx=1
n+ 1
Z+
1
xndx
x2n+ 1Z+
1
dx
xn=1
n1
un0
fn:t7→ sin(nt)
nt +t2
fn]0 ; +[
t0+fn(t)nt
nt+t21
t+fn(t)=O1
t2
fn]0 ; +[
t]0 ; +[
n+fn(t)=O1
n(fn)
tπ/2|sin u|≤|u|
|fn(t)| ≤ nt
nt +t21
tπ/2
|fn(t)| ≤ 1
nt +t21
t2
|fn| ≤ ϕ
ϕ:t7→ (1t[0 ; π/2]
1/t2t]π/2 ; +[
ϕ]0 ; +[
unZ+
0
0 dt= 0
t=π/2 + πmod 2π
Z+
0
etsinn(t) dtZ+
0
et|sinnt|dt
fn(t) = etsinn(t)
CS
f(t)
f(t) = (0t6=π/2 mod π
et
fnf
|fn(t)| ≤ et=ϕ(t)
ϕ[0 ; +[
lim
n→∞ Z+
0
etsinn(t) dt=Z+
0
f(t) dt= 0
fn(t) = 1 + t2/nn
R
(fn)f f(t)=et2
R
tR
ϕ:x7→ −xln(1 + t2/x)
[1 ; +[
ϕ00 ϕ0lim+ϕ0= 0
ϕ0
ϕ n N
|fn(t)| ≤ 1 + t2
nn
= exp(ϕ(n)) exp(ϕ(1)) = 1
1 + t2
t7→ 1/(1 + t2)R
Z+
−∞ 1 + t2
nn
dt
n+Z+
−∞
et2dt
1 / 12 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !