(E, < ., . >)f
E E
f
∀S∈ Sn(R),∃(Ω, D)∈On(R)×Dn(R)/ S = ΩDΩ−1
(E, < ., . >)f
E f
λ µ f λ 6=µ x λ y µ < x, y >= 0
λ, µ ∈R(f)λ6=µ x ∈SEP (f, λ)y∈SEP (f, µ)
x6= 0, y 6= 0, f(x) = λx, f(y) = µy
hλx, yi=hf(x), yi=hx, f(y)i=hx, µyi(λ−µ)hx, yi= 0 hx, yi= 0
f E
F E f F ⊥f
F E f x ∈F⊥∀y∈F, hf(x), yi=hx, f(y)i= 0
x∈F⊥f(y)∈F f(x)∈F⊥
n= dim(E)
n= 1
n≥1E n + 1
f E B1E A =B1(f)A
A=µαtC
C B ¶, α ∈R, C ∈ Mn,1(R), B ∈ Sn(R)
Ω∈On(R), D ∈Dn(R)B= ΩDΩ−1
U=µ1 0
0 Ω ¶U U−1=µ1 0
0 Ω−1¶
U−1AU =µαtCΩ
Ω−1C D ¶
G= Ω−1C A0=U−1AU =µαtG
G D ¶
•A0
G=
g1
gn
D= (d1, . . . , dn)A0=
α g1· · · gn
g1d10
gn0dn
k∈ {1, . . . , n}gk= 0 dkA0
Ek+1 ∀k∈ {1, . . . , n}, gk6= 0
λ∈R, V ∈ Mn+1,1(R)
V V =µx
X¶x∈RX∈ Mn,1(R)
A0V=λV ⇐⇒ µαtG
G D ¶µ x
X¶=λµx
X¶⇐⇒ ½αx +tGX =λx
xG +DX =λX
d1≥. . . dnλ > d1D−λIn
A0V=λV ⇐⇒ ½X=−x(D−λIn)−1G
αx −xtG(D−λIn)−1G=λx