2π f :RR
f(x) = π− |x|]π, π]f
2π
f:RRf(x) = x2[0,2π[f
f:RR2π
f(x) = 1x]0, π[
0x=π.
f
f
k=0
(1)k
2k+ 1,
k=0
1
(2k+ 1)2,
n=1
1
n2,
n=1
(1)n1
n2.
f:RR2π f(x) = exx]π, π]
f
f
n=1
(1)n
n2+ 1,
n=1
1
n2+ 1.
f:RR2π
f(x) = (xπ)2, x [0,2π[.
f
f
n=1
(1)n
n2,
n=1
1
n2.
f:RR2π α
x(t) + αx(t) = f(t).
2π x(t)f(t)
α= 1
f(t) =
tπ
22t[0, π[,
t3π
22
+π2
2t[π, 2π[.
C(R/2πZ)R
C2π f1, f2C(R/2πZ)
(f1~f2)(x) = 1
2ππ
π
f1(xy)f2(y) dy.
kNφk:RC
φk(x) = 1
k
k1
l=0
l
m=l
eimx.
φk(x) =
1
k
1cos kx
1cos xx̸∈ 2πZ,
k x 2πZ.
φk
k(2π)1π
πφk(x) dx= 1
ε]0, π[ (2π)1|x|∈[ε,π]φk(x) dx0k→ ∞
fC(R/2πZ)f~φkfR
f~φk
f bn
an(f) = 2
ππ
0
f(t) cos(nt) dt= 2 π
0
cos(nt) dt2
ππ
0
tcos(nt) dt=2
πn21(1)nn̸= 0,
π n = 0.
SF (f)(t) = π
2+
k1
4
π(2k+ 1)2cos (2k+ 1)t.
fRf
R
f
a0(f) = 1
π2π
0
f(t) dt=1
π2π
0
t2dt=1
πt3
32π
0
=8π2
3,
n1
an(f) = 1
π2π
0
t2cos(nt) dt
=1
πt2sin(nt)
n2π
0
2π
0
2tsin(nt)
ndt
=2
πtcos(nt)
n22π
0
+2π
0
cos(nt)
n2dt
=2
π2π
n2+sin(nt)
n32π
0
=4
n2
bn(f) = 1
π2π
0
t2sin(nt) dt
=1
πt2cos(nt)
n2π
0
+2π
0
2tcos(nt)
ndt
=1
π4π2
n+2tsin(nt)
n22π
0
22π
0
sin(nt)
n2dt
=4π
n+2
πcos(nt)
n32π
0
=4π
n.
SF (f)(t) = 4π2
3+ 4
n1cos(nt)
n2πsin(nt)
n.
f SF (f)t
f(t+) + f(t)
2=f(t)t̸∈ 2πZ,
2π2t2πZ.
f an= 0 nNn1
bn(f) = 2
ππ
0
sin(nt) dt=cos(nt)
nπ
0
=2
π
1(1)n
n=
4
n ,
0n .
f
SF (f)(t) =
k=0
4
(2k+ 1)πsin (2k+ 1)t.
f SF (f)
tf(t+) + f(t)
2=f(t).
f
t=π/2
sin (2k+ 1)t= sin π
2+kπ= (1)k,
k=0
(1)k
(2k+ 1) =π
4fπ
2=π
4.
f
1
2ππ
π
|f(t)|2dt=1
2
n=1
|bn(f)|2=8
π2
k=0
1
(2k+ 1)2,
k=0
1
(2k+ 1)2=π2
8.
n=1
1
n2=
k=0
1
(2k+ 1)2+
k=1
1
(2k)2=π2
8+1
4
n=1
1
n2,
n=1
1
n2=4
3
π2
8=π2
6.
n=1
(1)n1
n2+
k=1
1
(2k)2=
k=1
1
(2k+ 1)2=π2
8,
n=1
(1)n1
n2=π2
81
4
π2
6=π2
12 .
cn(f) = 1
2ππ
π
eteint dt
=1
2ππ
π
e(1in)tdt
=1
2πe(1in)t
1in π
π
=1
2πe(1in)πe(1in)π
1in
=1
2π(1)neπeπ
1in
=sh π
π
(1)n
1in.
SF (f)(t) = c0(f) +
n1cn(f)eint +cn(f)eint
f(t)t]π, π[f(π+) + f(π)/2 = ch π t =π
sh π
π
nZ
(1)n
1ineint =ett]π, π[
ch π t =π.
t= 0
1 = sh π
π
nZ
(1)n
1in,
π
sh π= 1 +
n=1
(1)n1
1in +1
1 + in=1 +
n=0
2(1)n
1 + n2,
n=0
(1)n
1 + n2=1
2π
sh π+ 1.
t=π
ch π=sh π
π
nZ
1
1in,
π
th π=
nZ
1
1in =1 +
n=0
2
1 + n2,
n=0
1
1 + n2=1
2π
th π+ 1.
1 / 9 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !