I J f :I→J f
y∈J x ∈I f(x) = y
f f−1g
∀x∈I, g(f(x)) = x∀y∈J, f(g(y)) = y .
x∈I y ∈J y =f(x)⇔x=f−1(y)
f[a, b]f0(x)>0
x∈]a, b[f[a, b] [f(a), f(b)] f0(x)<0
x∈]a, b[f[a, b] [f(b), f(a)]
f:I→J f0(x)6= 0 x∈I
f−1J
f−1(x)0=1
f0(f−1(x)) .
f(f−1(x)) = x
f0(f−1(x)) ×f−1(x)0= 1
•ln : ]0,+∞[→Rexp : R→]0,+∞[
•x7→ √xR+R+R+
x7→ x2R+∗
•x7→ 3
√xR R x7→ x3
R∗
f−1f
y=x
arccos arcsin arctan
x7→ cos x[0, π] [−1,1]
arccos : [−1,1] →[0, π]
x∈[−1,1] arccos x θ [0, π] cos θ=x
∀x∈[−1,1],cos(arccos x) = x
arccos(cos θ)θ θ
θ∈[0, π]
arccos ] −1,1[
∀x∈]−1,1[,arccos(x)0=−1
√1−x2.
θ∈]0, π[ cos(θ)0=−sin θ6= 0 x∈]−1,1[
arccos(x)0=1
−sin(arccos x)θ= arccos x