Programme de mathématiques niveau standard - Collège Sainte

Collège Sainte-Croix Fribourg
Programme de mathématiques
niveau standard
Mathématiques niveau standard 1/5 Juin 2015
Collège Sainte-Croix Fribourg
Première année
Algèbre
Notions de base : ensembles de nombres, opérations sur les ensembles, intervalles, fractions numé-
riques, exposants entiers et rationnels, notion de valeur absolue
Polynômes : opérations, factorisation (produits remarquables de degrés 2 et 3, mise en évidence,
polynômes de degré 2, regroupement, etc)
Fractions algébriques : domaine, factorisation, opérations de base (addition, produit, quotient)
Équations - inéquations : équations linéaires, inéquations linéaires, systèmes d’équations linéaires,
équations quadratiques, inéquations quadratiques, équations avec fractions algébriques, inéqua-
tions avec fractions algébriques, équations irrationnelles
Trigonométrie
Angles généralités
Mesures d’angles (degrés et radians)
Rapports trigonométriques dans le triangle rectangle (sinus, cosinus et tangente)
Rapports trigonométriques des angles remarquables
Relations trigonométriques simples cos2(x) + sin2(x)=1,tan(x) = sin(x)
cos(x)
Problèmes dans le triangle rectangle
Géométrie vectorielle
Notions de vecteurs, représentation graphique et algébrique
Composantes, norme
Opérations sur les vecteurs (géométriques et algébriques)
Vecteurs colinéaires
Combinaison linéaire, notion de base, déterminant de 2 vecteurs
Milieu d’un segment, distance entre deux points
Fonctions
Généralités : domaine et image, ordonnée à l’origine et zéros, signes d’une fonction, variations
(lecture, sur graphique), opérations (addition, multiplication, division)
Fonctions affines : équation d’une droite, positions relatives (parallèles, sécantes, perpendiculaires)
Fonctions quadratiques : représentation graphique, caractéristiques (sommet, tableaux de varia-
tions et de signes)
Mathématiques niveau standard 2/5 Juin 2015
Collège Sainte-Croix Fribourg
Deuxième année
Suites numériques
suites et séries arithmétiques et géométriques, séries géométriques illimitées
éléments de mathématiques financières
Fonctions
rappel sur les fonctions
fonctions polynomiales et rationnelles
notion de fonction réciproque
Fonctions exponentielles et Logarithmiques
fonctions exponentielles et logarithmiques
équations exponentielles et logarithmiques se ramenant à une équation du 1er degré
Trigonométrie
fonctions trigonométriques définies sur le cercle trigonométrique
fonctions trigonométriques du type asin(bx +c) + d
fonctions trigonométriques réciproques
équations trigonométriques simples se ramenant à une équation du 1er degré
théorèmes du sinus et du cosinus
Statistique
représentation des données
mesures de tendance centrale
mesures de dispersion
Géométrie plane
équations paramétriques et cartésiennes de droites
produit scalaire, angles
distance d’un point à une droite, bissectrices, cercles
Mathématiques niveau standard 3/5 Juin 2015
Collège Sainte-Croix Fribourg
Troisième année
Limites et continuité
Limite d’une fonction (sans la règle de l’Hospital)
Continuité d’une fonction
Asymptotes (horizontales, verticales et obliques)
Calcul différentiel
Taux de variation moyen, taux de variation instantané (nombre dérivé, fonction dérivée)
Règles de calcul, dérivées de fonctions trigonométriques
Variations de fonction
Courbure et point(s) d’inflexion
Étude de fonctions
Problèmes d’optimisation
Géométrie vectorielle
Lieux géométriques (visualisation dans l’espace) : droite, plan dans l’espace, cercle, cylindre, sphère
Outils de base et applications directes : norme, produits scalaire, vectoriel et mixte
Lieux géométriques (géométrie analytique) : droite (équations vectorielles ou paramétriques, car-
tésiennes), plan dans l’espace (équations vectorielles ou paramétriques, cartésiennes), sphère, dis-
tances point-droite et point-plan
Mathématiques niveau standard 4/5 Juin 2015
Collège Sainte-Croix Fribourg
Quatrième année
Probabilités
Notions de base des ensembles, diagrammes et arbres
Événements et probabilités simples
Probabilités conditionnelles
Loi binomiale
Variables aléatoires, loi de probabilité et espérance mathématique
Calcul intégral
Primitive et intégrale indéfinie
Techniques de calcul d’intégration, intégration par parties
Intégrale définie
Calcul d’aires sous une courbe, entre deux courbes (sur un intervalle)
Calcul du volume d’un corps de révolution
Fonctions exponentielles et logarithmes
Particularités et propriétés algébriques
— Dérivées
— Primitives
Théorème de L’Hospital
Mathématiques niveau standard 5/5 Juin 2015
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !