PΩ
P(∅)=0
A∩B=∅P(A∪B) = P(A) + P(B)
A1,· · · , An
P n
[
k=1
Ak!=
n
X
k=1
P(Ak)
A∈ P(Ω) P(A) = 1 −P(A)
A, B ∈ P(Ω) A⊂B P (A)6P(B)
A, B ∈ P(Ω) P(A∪B) = P(A) + P(B)−P(A∩B)
(Ak)k∈NAk=∅k∈N
P(∅) = P
[
k∈N
Ak
=
+∞
X
k=0
P(Ak) = P(A0) + P(A1) +
+∞
X
k=0
P(Ak)>P(A0) + P(A1)
P(∅>2P(∅)P(∅)60P(∅)=0
(Ak)k∈NA0=A A1=B Ak=∅k>2
P(A∪B) = P
[
k∈N
Ak
=
+∞
X
k=0
P(Ak) = P(A0) + P(A1) +
+∞
X
k=0
P(Ak) = P(A) + P(B) +
+∞
X
k=0
P(∅)
|{z}
=0
P(A∪B) = P(A) + P(B)
A∈ P(Ω) A A Ω
1 = P(Ω) = P(A∪A) = P(A) + P(A)
P(A)=1−P(A)
A, B ∈ P(Ω) A⊂B B =A∪(A∩B)
P(B) = P(A) + P(A∩B)
| {z }
>0
>P(A)
P(A)6P(B)
A∪B= (A∩B)∪(A∩B)∪(B∩A)
A= (A∩B)∪(A∩B)B= (A∩B)∪(B∩A)
P(A∪B) = P(A∩B) + P(A∩B) + P(B∩A)
=P(A)−P(A∩B)+P(A∩B) + P(B)−P(A∩B)
P(A∪B) = P(A) + P(B)−P(A∩B)
{An, n ∈N}
+∞
X
n=0
P(An) = P(Ω) = 1
n>1Fnn
P(Fn) = (5/6)n−1(1/6)
P(A)P(B)
C
A B P (A) = P(B)=0,75 P(A∩B)