Chapitre 3
CALCUL LITTERAL
Utiliser des outils de calculs littéraux
Rédiger un calcul correctement
Savoir utiliser calculatrice et tableur
Comprendre le sens d’un problème, extraire l’information utile
Rédiger une solution d’un problème
I) Définitions :
1) Expression numérique.
« 2 × 5 + (15 – 8) » est une expression numérique. On peut la calculer : 2 × 5 + (15 – 8) = -10 + (7) = 17.
2) Expression littérale.
On appelle calcul littéral un calcul où les nombres sont remplacés par des lettres.
« 5x² + 3x + (4x – 2) – (x² + 1) » est une expression littérale.
« x » représente un nombre quelconque. C’est une variable.
II) Conventions d’écritures
1) Écrire et simplifier une expression littérale :
•
Pour simplifier une expression algébrique,
on peut supprimer le signe « × » entre un nombre et une lettre (ou des parenthèses).
Attention, on ne peut pas supprimer ce même signe entre deux nombres !
Exemples :
a)
Simplifier l’expression : A= 5
×
x+7
×
(3
×
x–2)
×
4= 5 x+7 (3 x–2) 4
b)
3 ×5 ≠ 35 !!!!
•
Pour tout nombre « a », on a :
1× a = a 0 × a = 0 a × a = a² a ×a ×a = a
3
a ×a ×a ×a = a
4
2) Réduire une expression littérale
Réduire une expression algébrique, c’est l’écrire avec le moins de termes possibles.
Pour cela on met ensembles les termes de même catégorie.
Exemples :
2x + 3x – 5 + x = 6x – 5 5x – 3x + 5 – x= x + 5
5y+3x+21– 4y –2xy+5x–12 = 8x+y – 2xy + 9
3) Supprimer des parenthèses
•Dans une somme, on peut supprimer les parenthèses précédées d’un signe + si elles sont non suivies de «×» ou «:».
Exemples : 2 + ( 2 + 10,7 ) = 2 + 2 + 10,7 = 14,7 2x + (3x – 5 + x) = 2x + 3x – 5 + x = 6x – 5
2x – (3x – 5 + x) = 2x – (4x – 5) 2x + (3x – 5 + x)
×
2 = 2x+ 2(4x – 5)
III) Tester une égalité
Pour tester une égalité, on remplace l’inconnue par une valeur numérique.
Exemple :
Calculer A=2x ( x + 4 ) + 3 ( 4 – x ) pour x = 2.
A = 2x ( x + 4 ) + 3 ( 4 –x )
A = 2 × 2 ×( 2 + 4 ) + 3× ( 4 –2 )
A = 4 ×(6) + 3× (2) = 24 + 6 = 30
Tester l’égalité 3x+2 = x+5 pour x = l
On calcule d’abord pour le membre de gauche : 3×1+2 = 3+2=5
On calcule ensuite pour le membre de droite : 1+5 = 6
5 ≠ 6 donc l’égalité n’est pas vérifiée pour x = 1.