Et donc
P(E)=
et X : {HHH, HHT,…, TTT) R
A – Discrete variables
X prend des valeurs ponctuelles : 1 si une seule face pile est tombée sur les
3 lancés, 0 si il y en plus de 1 ou pas du tout.
If we take X to be a real valued random variable, whose target space E is any
countable set (N, Z, Q), the X is said to be discrete. The examples shown
below are discret RV.
1) Probability mass function
A discret random variable X has countably many values (xi) iϵN.
We set for any I ϵ N (les naturels).
p(xi)=P(X=xi)
La fonction de masse associe à une valeur possible sa probabilité.
This function (from X(Ω) to [0 ;1]) is called the probability mass function of
X.
Avec l’exemple utilisé au début, on a calculé que P(X=1).
2) Expectation value
The mean value, also called expectation, average, or expected value of
discrete RV X is
E(X) =
To generate RV for one X, you can take any function f:RR and then
consider f ∘ X : ΩR
so
E(f(X)) =
Remark : the mean value is often denoted µ.
3) Variance (V)
The Variance is a way to estimate the distance or dispersion of X values
from its mean, so if we note µ the mean, we are interested in the value of
E(X-µ), or more precisely the absolute value ∣E(X-µ)∣, since we consider a