Pn(C)n(Ui, ϕi)
0≤i≤nPn(C)
Ui∩ Uj={[Z0:... :Zn]∈Pn(C) : Zi6= 0 Zj6= 0}, i 6=j
j > i
ϕi(Ui∩ Uj) = {(z1, ..., zn)∈Cn:zj6= 0},
ϕj(Ui∩ Uj) = {(z1, ..., zn)∈Cn:zi+1 6= 0}.
ϕji ≡ϕjϕ−1
i:ϕi(Ui∩ Uj)−→ ϕj(Ui∩ Uj),
(z1, ..., zn)7−→ µz1
zj
, ..., czj
zj
, ..., 1
zj
, ..., zn
zj¶, zj6= 0
bϕij ≡ϕiϕ−1
j
ϕji ϕij
(Ui, ϕi) (Uj, ϕj)Sn
i=0 Ui=Pn(C)
Pn(C)
n= 1
P1(C) = C∪ {∞}
Ui=P1(C)\{∞} =C,
Uj=P1(C)\{0}=C∗∪ {∞},
ϕi:Ui−→ C, ,
ϕi:Uj−→ C, z 7−→ ϕj(z) = (1
zz∈C∗
0z=∞
ϕiϕjUi
UjUi∩ Uj6=∅P1(C)
ϕi(Ui∩ Uj) = ϕj(Ui∩ Uj) = C∗,
ϕjϕ−1
i:C∗−→ C∗, z 7−→ 1
z,
S2−→ C∪ {∞},(z0, z1, z3)7−→
z0+√−1z2
1−z3
z6= 1
∞z3= 1