(Ω,F,P) = (]0,1[,B(]0,1[), λ)λ
X X(ω) = cos(πω)G
A⊆]0,1[ A Ac
G G ]0,1[
E[X|G] = 0
X1, . . . , XnXjλj
X1+X2X1+. . . +Xn
P(Xj=`|X1+. . . +Xn=k)
(Ω,F,P) = (]0,1[,B(]0,1[), λ)λ
X=1[0,3
/4[Y=1[0,1
/2[Z=1[1
/4,3
/4[
Y Z E(Y|Z) = E(Y)E(Y|X)E(Y|X, Z)
E(Y|X, Z)6=E(Y|X)Y Z
(X, Y ) (Ω,F,P)
E(Y|X) = cX
c=E(XY )
/E(X2)
(X1, . . . , Xd) (a1, . . . , ad) (b1, . . . , bd)∈Rd
Y=a1X1+. . . +adXdZ=b1X1+. . . +bdXdE(Z|Y)
(Xn)n≥0m=E[X1]N
(Xn)n≥0G(1
/2)SN:= PN
i=1 Xi
E[SN|N]E[SN]
X1, . . . , Xn
λ > 0T:= X1+. . .+XnE(h(X1)|T)h
n= 2
n≥1p1, p2, p3p1+p2+p3= 1
pij =(n!pi
1pj
2pn−i−j
3
i!j!(n−i−j)! , i +j≤n
0, .
(X, Y )P(X=i, Y =j) = pij
X Y Y X
E(XY )