Énigme n5
Samuel Rochetin
Dimanche 15 mai 2016
Résumé
Cette énigme constituait, à quelques mots près, la vingt-sixième et dernière question du jeu-concours Kangourou
des Mathématiques 2011, catégorie CE2, CM1, CM2.
Énoncé. dric choisit un nombre entier. S’il divise 404 par ce nombre, il reste 3. S’il divise 2011 par ce nombre,
combien reste-t-il ?
Démonstration. Démarche attendue des élèves de primaire : si Cédric choisit le nombre 401, alors en divisant 404
par 401, il reste bien 3puisque 404 = 401 ×1+3. La division euclidienne de 2011 par 401 s’écrit 2011 = 401 ×5+6.
Il reste donc 6. Un élève de primaire sera satisfait de ce résultat pourtant très incomplet !
Questions : que se passe-t-il si Cédric choisit un autre nombre dont le reste dans la division euclidienne par 404
est 3? D’ailleurs, en existe-t-il ? Le reste dans la division euclidienne de 2011 par ce nombre hypothétique sera-t-il
toujours égal à 6? Comme l’indique le corrigé officiel, « la question laisse supposer que la réponse ne dépend pas
du nombre choisi ». Autrement dit, un élève de primaire doit comprendre le sous-entendu : il suffit de trouver un
nombre qui permette de répondre au problème. La réalité est légèrement différente, puisqu’en fait il n’existe pas
d’autre nombre que 401 permettant de répondre au problème. Prouvons-le.
Quels sont les nombres que peut choisir Cédric ? 401 est le plus grand entier n404 tel que le reste dans la
division euclidienne de 404 par nsoit 3(puisque 402,403,404 ne donnent pas un reste de 3). Supposons qu’il existe
un entier n < 401 tel que le reste dans la division euclidienne de 404 par nsoit 3. Alors il existe un entier qtel
que 404 = nq + 3 et 3< n (division euclidienne). Or, nous avons 404 = 401 ×1+3. Par soustraction de ces deux
égalités, il vient 401 = nq. Donc nest un diviseur de 401 (non trivial car n6= 1). Réciproquement, soit nun diviseur
de 401, avec n6= 1 et n6= 401 : il existe un entier qtel que 401 = nq. Puisque 401 n’est ni divisible par 2(impair)
ni divisible par 3(somme des chiffres 4+0+1 = 5 non divisible par 3), alors n > 3. Comme 404 = 401 ×1+3,
en remplaçant 401 par nq, il vient 404 = nq + 3 avec 3< n. C’est la division euclidienne de 404 par n, qui a donc
pour reste 3. Les nombres que peut choisir Cédric sont donc exactement les diviseurs strictement supérieurs à 1de
401. Or, 401 est premier, donc son seul diviseur strictement supérieur à 1est 401. Cédric ne peut donc choisir que
le nombre 401 !
1
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !