
qdP(p
q)P
|r−α| ≥ 1
|r−α| ≥ 1≥1
qd
|r−α| ≥ 1≥Cα
qd
Cα= min(1,1
Mα)
s
0< sm−sn<10
910−(n+1)!
m n
0< s −sn≤10
910−(n+1)!
s
Cα
10−d n!≤10
910−(n+1)! ⇒10(n+1)!−d n!≤10
9Cα
(n+ 1)! −d n!→+∞
p(1, α, α2,··· , αp)Q
Ra0,··· , ap
a01 + a1α+a2α2+··· +apαp= 0
P=a0+a1X+··· +apXp
α α
(1, α, α2,··· , αd−1)Q[α]
d p (1, α, α2,··· , αp)
Q[α]
(1, α, α2,··· , αd) (1, α, α2,··· , αd−1)
(a0,··· , ap)6= (0,··· ,0)
a01 + a1α+a2α2+··· +adαd= 0
ad
(a0,··· , ad−1)6= (0,··· ,0) a01 + a1α+a2α2+··· +ad−1αd−1= 0
(1, α, α2,··· , αd−1)
αdα
α
αd=−a0
ad− ··· − ad−1
ad
αd−1
⇒αd+1 =−a0
ad
α− ··· − ad−2
ad
αd−1−ad−1
ad
αd∈Vect(1, α, α2,··· , αd−1)
α αn∈Q[α]
n
α−1∈Q[α] (a0,··· , ad)6=
(0,··· ,0)
a0+a1α+··· +adαd= 0
a06= 0 α
a0= 0 ⇒αa1+··· +adαd−1= 0 ⇒a1+··· +adαd−1= 0
(a1,··· , ad)6= (0,··· ,0) d
(1, α, α2,··· , αp)
a06= 0 α−1
1 + αa1
a0
+··· +ad
a0
αd−1= 0 ⇒α−1=−a1
a0− ··· − ad
a0
αd−1∈Q[X]
P d α
d
Q R
d P =QR α
d p (1, α, α2,··· , αp)