E F
E=F
Sn(R)n
An(R)n
Mn(R)
RRD
1
x+y+1 dxdy D =(x, y)∈R2,0≤x≤1, x2≤y≤x
EK K =R K =Cϕ1, ..., ϕp∈E∗ϕ:E−→ Kp
ϕ= (ϕ1, ..., ϕp)ϕ ϕ1, ..., ϕp
RRD
x2
a2+y2
b2dxdy D =(x, y)∈R2, x2+y2≤R2
(a, b, R)∈(R∗
+)3
Mn(K)K=R K =C
RRDe−(x2+xy+y2)dxdy D =(x, y)∈R2, x2+xy +y2≤1
ERn≥2
1≤p≤n p e∗
1, e∗
2, ..., e∗
pH1, H2, ..., Hp
∪p
k=1Hk6=E
RRD
1
1+x2+y2dxdy D =(x, y)∈R2, x2+y2≤1