(Un) (Vn)
Un≤M⇒lim
n→∞ Un≤M
Vn≥m⇒lim
n→∞ Vn≥m
∃N1,∀n>N1, Un≤Vn
lim
n→∞ Un=a⇔ ∀ε > 0,∃N2∈IN, ∀n>N2,|Un−a|< ε Un> a −ε
lim
n→∞ Vn=b⇔ ∀ε > 0,∃N3∈IN, ∀n>N3,|Vn−b|< ε Vn< b +ε
a≤b⇔ ∀ε > 0, a < b +ε
ε > 0N=max(N1, N2, N3)∀n>N a<Un+ε≤Vn+ε<b+ 2ε
(1
√n) 0 ∀n≥1,|1
√n| ≤ 1 ( 1
√n)
((−1)n))
lim
n→∞ Un=`⇔ ∀ε > 0,∃N∈IN, ∀n > N, |Un−`|< ε
ε= 1 ∀n>N |Un−`|<1
|Un|=|Un−`+`| ≤ |Un−`|+|`| ∀n>N |Un|<1 + |`|
M= max{U0, U1,··· , UN,1 + |`|} ∀n∈IN |Un| ≤ M(Un)
(Un) (Vn) (Wn)
Un≤Vn≤Wn(Un) (Wn)`(Vn)
(Vn)∀n≥1,3 + 2
n≤Vn≤3n+1
n
lim
n→+∞Vn= 3
∃N1,∀n>N1, Un≤Vn≤Wn
lim
n→∞ Un=`⇔ ∀ε > 0,∃N2∈IN, ∀n>N2,|Un−`|< ε Un> ` −ε
lim
n→∞ Wn=`⇔ ∀ε > 0,∃N3∈IN, ∀n>N3,|Wn−`|< ε Wn< ` +ε
lim
n→+∞Vn=`⇔ ∀ε > 0,∃N∈IN, ∀n > N, ` −ε<Vn< ` +ε
ε > 0N=max(N1, N2, N3)∀n > N ` −ε<Un≤Vn≤Wn< ` +ε
|Vn| ≤ Unlim
n→+∞Un= 0 lim
n→+∞Vn= 0
(sin n
n) 0 ∀n∈IN∗,|sin n
n| ≤ 1
n
1
n→0
(Un)
(Un) lim
n→+∞Un= sup{Un, n ∈IN}inf{Un, n ∈IN }