M(p, n, )
(p, n)
A∈ M(p, n, )ai,j i`eme j`eme A= (ai,j )
M(p, n, )p n
p n ∆i,j
(i, j)∈ {1,· · · , p}×{1,· · · , n}∆i,j = (i, j) 1
p n
(i, j)p
A= (ai,j )
A=
p
X
i=1
n
X
j=1
ai,j ∆i,j
A∈ M(p, n, )
A
V(L1(A),· · · , Lp(A)) M(1, n, )p A
A∈ M(p, n, )t
A∈ M(n, p, )
A A = (ai,j )t
A= (aj,i)
t(t
A) = A
t(αA +βB) = αt
A+βt
B
(t
A) = (A)
AV(C1(A),· · · , Cn(A))
M(p, 1,)n A
t
A=A
A= (ai,j ) (n, n)⇐⇒ ∀i, j ∈ {1,· · · , n}, aj,i =ai,j
(n, n)S(n, )n2+n
2M(n, )
t
A=−A
A= (ai,j ) (n, n)⇐⇒ ∀i, j ∈ {1,· · · , n}, aj,i =−ai,j
(n, n)A(n, )n2−n
2M(n, )
S(n, )A(n, )M(n, )
A∈ M(n, )A=1
2A+t
A+1
2A−t
A