Fonction puissance entière Fonction puissance négative Fonction

(xxn)nN
R+R+n
R R n
n x +
0n
0n
n n
(xxn)nN
lim
x+xn= 0 lim
x0+xn= +0n
x+n
x0++n
n(x7→ xn)R+R+
n
·:R+R+
x7→ n
x.
xR+,yR+, xn=yx=n
y.
n(x7→ xn)R R
R
n
·:RR
x7→ n
x.
x > 0y=n
xyn=xnln(y) = ln(x)ln(y) = 1
nln(x)y= exp( 1
nln(x))
n
x=x1
n.
(xp)1
q=x1
qp
=xp
q(1)2= 1 6= (1)1xa
x > 0 exp(aln(x))
n
0 = 0 0
lim
x+
n
x= +n
0n
ln
(f, F )(F(I, R))2F f I F F 0=f.
(f, F, G)(F(I, R))3. F f I
G f I (kRG=F+k).
f∈ F(I, R). f I
I
f f I
f]a, +[
a f ++
(x1
x)R+0x= 1.
ln(x) = x
1
1
tdt.
x > 0,ln0(x) := 1
x.
(xln(x))
(x, y)(R+)2,ln(x·y) = ln(x) + ln(y).
aR+(xln(ax)) h:h(x) = a
ax =1
x.
(x1
x)
kRxR+,ln(ax) = ln(x) + k.
x= 1 ln(a) = k.
xR+,ln(ax) = ln(x) + ln(a). a
ln(1) = 0
x > 0,ln(x×1
x) = ln(1) = 0 ln(x) + ln( 1
x) = 0 ln( 1
x) = ln(x).
x > 0,y > 0,ln(x
y) = ln(x)ln(y).
x > 0,nZ,ln(xn) = nln(x).
a > 1 loga:]0,+[R
x > 0,loga(x) := ln(x)
ln(a).
10 log log10
ln
d
dx(ln)(x) = 1
x>0,ln R+.
+ln(2n) = nln(2)
lim
n→∞ ln(2n) = +.
ln ++
X= 1/x lim
x0ln(x) = −∞.
lim
x+ln(x) = +,lim
x0ln(x) = −∞.
φ(x) = x1ln(x)φ(x)0,xR+.
lim
x1
ln(x)
x1= lim
h0
ln(1 + h)
h= 1.
ln R+R.R+
lim
x0ln(x) = −∞ lim
x+ln(x) = +
R+R. y x
x y
exp :] − ∞; +[]0; +[
yxln(x) = y.
xR,yR+,(y= exp(x)ln(y) = x).
xR,ln(exp(x)) = x.
yR+,exp(ln(y)) = y.
ln(1) = 0 exp(0) = 1.exp(1) = eln(e) = 1.
e= 2.718281828
xR, ex:= exp(x).
xN,ln(ex) = x
lim
x→−∞ ex= 0 lim
x+ex= +
(x, y)R2, ex+y=ex×ey.
yR,1
ey=ey. x +y= 0
(x, y)R2, exy=ex
ey.
ex+yln(ex+y) = x+y exey
R
xR,exp0(x) = exp(x).
f:IRaI g :x7→ ef(x)a
d
dx(ef(x))(a) = g0(a) = f0(a)ef(a).
xR,1+ xex
φ(x) = ex1x φ0(x) = ex1>0x > 0φ0(x)<0x < 0φ(x)> φ(0) = 0
ax
xN, a ax=a×a×a··· × a
  
x
xZa6= 0 x < 0, ax=1
a×1
a×1
a··· × 1
a
  
x
xRa > 0ax= exp (xln (a))
xaxxax
(ax)
x=exp(xln(a))
x= ln(a)×exp(xln(a)) = ln(a)×ax
(aax)a a > 1.
lim
−∞ expa= lim
x→−∞ exp(xln(a)) =
0a > 1
+a < 1
1a= 1
f f(x) = u(x)v(x)
f u(x)>0; u v f
f(x) = exp (v(x)·ln(u(x)) d
dx(f(x)) = d
dx[v(x) ln(u(x))] ·exp (v(x)·ln(u(x))
=d
dx[v(x) ln(u(x))] ·u(x)v(x)= [v0(x) ln(u(x)) + v(x)u0(x)
u(x)]·u(x)v(x).
(xxx).
f f(x) = u(x)v(x)d
dx[v(x) ln(u(x))]
f0(x). f(x) = exp(v(x) ln(u(x)))
g g exp g
u(x)1v(x)→ ∞
lim
x+(1 + 1
x)xlim
x+(1 + 1
x2)xlim
x+(1 + 1
x)(x2)
lim
x+
ln(x)
x=
(α, β)(R+)2,lim
x+
(ln(x))α
xβ=
(α, β)(R+)2,lim
x0+xβ(|ln(x)|)α=
a]1,+[,αR,lim
x+
ax
xα=
a]1,+[,αR,lim
x→−∞ ax|x|α=
kN,x]1,1[,lim
n+nk×xn=
lim
x+xxlim
x0+xxlim
x+1 + 3
x(5x)
lim
x+
ln(x)
ex,lim
x+
x3
ex=
zCz=a+ib z
eaeib ez
ez+z0=ezez0
aCea=ea+2πi
ln(ρe) = ln(ρ) + iθ θ 2π
f:DRTxR, x Dx+TD f (x+T) = f(x)
T
f(x+nT ) = f(x)
R2πsin0(x) = cos(x)
0 limx0sin(x)
x= 1
R+x > 0,sin(x)< x
x=π
2+kπ k Z
R2πcos0(x) = sin(x) 0
lim
x0
cos(x)1
x2=1
2
R\π
2+kπ |kZ=
kZπ
2+kπ, π
2+kπ,tan x=sin x
cos x.
tan0(x) = 1 + tan2(x) = 1
cos2(x)
0y=xlim
x0
tan x
x= 1 x]0, π/2[,tan(x)> x
tπ
2,π
2t
R
arctan : Rπ
2,π
2
x7→ arctan(x)
xπ
2,π
2,yR,tan(x) = yx= arctan(y)
xπ
2,π
2,arctan(tan(x)) = x
yR,tan(arctan(y) = y.
arctan
y01
313 +∞ −∞
arctan(y) 0 π
6
π
4
π
3π/2π/2
x > 0,arctan(x) + arctan( 1
x) = π
2. x < 0
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !