K[X]
K K
K[X]
pgcd,ppcm r2,
P1,··· , Pr
U1,··· , Ur
r
k=1
UkPk= 1.
u E.
K[u]
u0=Id u
kN, uk+1 =uk
P=
p
k=0
akXkK[X],
P(u),
P(u) =
p
k=0
akuk
L(E)u v =P(u)
PK[X].K[u]
(P, Q)K[X]2,(P Q) (u) = P(u)Q(u) = Q(u)P(u) = (QP ) (u)
L(E)n2,dim (K[u]) n2.
K[A]Mn(K)
A∈ Mn(K).
A∈ Mn(K)u∈ L(E)B,
P(A)P(u)B.
PK[X]. λ Sp (u), P (λ)
P(u).
K
Sp (P(u)) = {P(λ)|λSp (u)}
λKu x E\ {0}
PK[X], P (u)x=P(λ)x.
u(x) = λx, k 0uk(x) = λkx
kNP(u)x=P(λ)x P K[X].
x P (u)P(λ).
P(X) = a0P(u) = a0Id a0,
E.
KPSp (u) Sp (P(u))
{P(λ)|λSp (u)} ⊂ Sp (P(u)) .
µKP(u), Q (X) = P(X)µ,
Q(u)Q(X) = α
p
i=1
(Xλi)miK
i u λiId
λiu Q (λi)=0 µ=P(λi).
Sp (P(u)) = {P(λ)|λSp (u)}.
K{P(λ)|λSp (u)} ⊂ Sp (P(u))
P(X) = X21I2=A2, A =01
1 0
M2(R)π
2,Sp (u) = ,
K=C,L(E)v7→ ∥v,
eu=
+
k=0
1
k!uk
euC[u].
L(E)
L(E)E,
k0
uk
k!
uk
k!
+
k=0
uk
k!=eu<+uk
k!
L(E),
C[u]L(E)
eu= lim
k+
k
j=0
1
k!ukC[u].
L(E)n2,uk|0kn2
PK[X]\ {0}P(u) = 0.
Iu={PK[X]|P(u) = 0}
P7→
P(u),K[X].
u Iuu
πu
Iu={PK[X]|P(u) = 0}=K[X]πu
πuu.
πu
A∈ Mn(K).
u A BE, A u
PK[X], P (u)
BP(A)P(u) = 0 P(A) = 0, Iu=IAπu=πA
B=Q1AQ P K[X], P (B) = Q1P(A)Q P (A)=0
P(B) = 0, IA=IBπA=πB
Iu
πuIu{0}.
D
fE=C(R,R)f
Iu̸={0}, P =
p
k=0
akXk
D λ, fλ:t7→ eλt,
0 = P(D) (fλ) =
p
k=0
akDk(fλ) = p
k=0
akλkfλ=P(λ)fλ
P(λ) = 0. P
Iu={0}D
u= 0 πu(X) = X.
1,
u=λId πu(X) = Xλ.
u∈ L(E)
q1uq1̸= 0 uq= 0 q u
u∈ L(E)q1πu(X) = Xq.
u E u u=u.
X2X, πu(X) = X u = 0,
πu(X) = X1u=Id, πu(X) = X2X
F E u,
u F u.
v u F. F F
u. πu(u) = 0 L(E), πu(v) = 0 L(F), πu
v v.
PIu,
Sp (u)P1{0}
u
Sp (u) = π1
u{0}
u
λKu x E\ {0}
0 = πu(u) (x) = πu(λ)x
πu(λ) = 0, λ πuPIu
πu.
λKπu, πu(X)=(Xλ)Q(X)
πu(u) = (uλId)Q(u) = 0 πuuλId
λ u.
0
uGL (E), u1K[u].
FL(E)Id
G=FGL (E)
GL (E).
uGL (E), πu(0) ̸= 0. πu(X) = XQ (X)
πu(u) = uQ(u) = 0 u1Q(u)=0,
πu. πu(u) =
p
k=0
akukp1a0̸= 0,
u
p
k=1
akuk1=a0Id
u1=1
a0
p
k=1
akuk1K[u].
u, v G, u v G F
uG, u1F, u1
u u GL (E).
K[X],
K[u]puπu,
uk0kpu1.
PK[X], P =πuQ+R R
Kpu1[X]πu(u) = 0, P (u) = R(u) =
pu1
k=0
αkukR(X) =
pu1
k=0
αkXk,
K[u] = Vect uk|0kpu1.
RKpu1[X]R(u) = 0, R IuR πu,
R= 0 deg (R)<deg (πu).uk0kpu1
K[u].
K[u]v=P(u)
PKpu1[X].
dim (K[u]) = pu.
φu:P7→ P(u)K[X]K[u]Iu=
K[X]πu= (πu)πuK[X]
(πu)
K[u],dim (K[u]) = dim K[X]
(πu)=pu
(K[u] ) (K[u] ) (πu)
K[u]
πuπu=P Q P, Q 0 = πu(u) =
P(u)Q(u)P(u)Q(u)πuK[u]
K[u]πu
πuPKpu1[X]πu
A, B u+BP = 1
Id =B(u)P(u), P (u)K[u].
K[u]v=P(u)PKpu1[X]\ {0},
K[u]
E1,··· , ErE{0}, u
E=
r
k=1
Ek. k 1r, uk∈ L(Ek)u
Ekπkuk. πu=π1···πrppcm π1,··· , π2
PIu, P (u) = 0, P (uk)=0 k
1r, P
r
k=1
Iuk. Iu
r
k=1
Iuk. P
r
k=1
Iuk,
1 / 44 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !