u, v G, u ◦v G F
u∈G, u−1F, u−1
u u ∈GL (E).
K[X],
K[u]puπu,
uk0≤k≤pu−1.
P∈K[X], P =πuQ+R R ∈
Kpu−1[X]πu(u) = 0, P (u) = R(u) =
pu−1
k=0
αkukR(X) =
pu−1
k=0
αkXk,
K[u] = Vect uk|0≤k≤pu−1.
RKpu−1[X]R(u) = 0, R ∈IuR πu,
R= 0 deg (R)<deg (πu).uk0≤k≤pu−1
K[u].
K[u]v=P(u)
P∈Kpu−1[X].
dim (K[u]) = pu.
φu:P7→ P(u)K[X]K[u]Iu=
K[X]πu= (πu)πuK[X]
(πu)
K[u],dim (K[u]) = dim K[X]
(πu)=pu
(K[u] ) ⇔(K[u] ) ⇔(πu)
K[u]
πuπu=P Q P, Q 0 = πu(u) =
P(u)◦Q(u)P(u)Q(u)πuK[u]
K[u]πu
πuP∈Kpu−1[X]πu
A, B Aπu+BP = 1
Id =B(u)◦P(u), P (u)K[u].
K[u]v=P(u)P∈Kpu−1[X]\ {0},
K[u]
E1,··· , ErE{0}, u
E=
r
k=1
Ek. k 1r, uk∈ L(Ek)u
Ekπkuk. πu=π1∨···∨πrppcm π1,··· , π2
P∈Iu, P (u) = 0, P (uk)=0 k
1r, P ∈
r
k=1
Iuk. Iu⊂
r
k=1
Iuk. P ∈
r
k=1
Iuk,