4TABLE DES MATIÈRES
4.5.2 Droites dans l’espace de dimension 3 . . . . . . . . . . . . . . . . . . . . . . . 62
5 Espaces euclidiens et applications linéaires 65
5.1 Espaces de dimension n.................................. 65
5.1.1 Définitions et notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.2 Produitscalaire................................... 66
5.1.3 Norme et distance dans Rn............................ 67
5.1.4 Représentation matricielle des vecteurs de Rn.................. 68
5.1.5 Formule matricielle du produit scalaire . . . . . . . . . . . . . . . . . . . . . . 69
5.1.6 Multiplication des matrices et produit scalaire . . . . . . . . . . . . . . . . . 70
5.2 Applicationslinéaires.................................... 71
5.2.1 Rappels sur les applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.2 Applicationslinéaires ............................... 72
5.2.3 Quelques exemples d’applications linéaires . . . . . . . . . . . . . . . . . . . . 72
5.2.4 Rotations ...................................... 75
5.2.5 Composition d’applications linéaires . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Propriétés des applications linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6 Espaces vectoriels 81
6.1 Définition et premières propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Sous-espacesvectoriels................................... 83
6.2.1 Espace des solutions d’un système d’équations linéaires homogènes . . . . . . 84
6.3 Combinaisonlinéaire.................................... 85
6.4 Indépendancelinéaire ................................... 87
6.4.1 Interprétation géométrique de la dépendance linéaire . . . . . . . . . . . . . . 88
6.5 Basesetdimension..................................... 89
6.6 Espace des lignes et colonnes d’une matrice . . . . . . . . . . . . . . . . . . . . . . . 94
6.7 Changementsdebases................................... 99
6.7.1 Changement de bases en 2 dimensions . . . . . . . . . . . . . . . . . . . . . . 99
6.7.2 Dimensionquelconque............................... 100
7 Produits scalaires généralisés 103
7.1 Définition et premières propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Anglesetorthogonalité .................................. 106
7.2.1 Angle formé par deux vecteurs . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3 Bases orthogonales et méthode de Gram-Schmidt . . . . . . . . . . . . . . . . . . . . 110
7.4 Matricesorthogonales ................................... 114
7.4.1 Définition et Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.4.2 Changement de bases orthonormées . . . . . . . . . . . . . . . . . . . . . . . 115
7.4.3 Décomposition Q-R : application du théorème 7.30 . . . . . . . . . . . . . . . 115
7.5 La méthode des moindres carrés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.5.1 Solution approximative d’un système d’équations linéaires . . . . . . . . . . . 117
8 Diagonalisation des matrices 121
8.1 Définitions et premières propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.1.1 Calcul des vecteurs propres . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.2 Diagonalisation....................................... 125
8.2.1 Méthode pour diagonaliser une matrice . . . . . . . . . . . . . . . . . . . . . 127
8.3 Matrices symétriques et diagonalisation . . . . . . . . . . . . . . . . . . . . . . . . . 128
9 Applications linéaires 131
9.1 Définitionsetexemples................................... 131
9.1.1 Propriétés des applications linéaires . . . . . . . . . . . . . . . . . . . . . . . 134
9.1.2 Expression d’une application linéaire dans une base . . . . . . . . . . . . . . 134
9.2 Noyau et image d’une application linéaire . . . . . . . . . . . . . . . . . . . . . . . . 136
9.3 Applications linéaires inversibles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
9.4 Matrice d’une application linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140