P, Q ∈ A[X]Q X P A[X]P◦Q=P(Q)
P◦Q6=Q◦P
P Q deg(P◦Q) = deg(P)×deg(Q)
∀P1, P2, Q ∈ A[X]∀a1, a2∈ A (a1P1+a2P2)◦Q=a1P1◦Q+a2P2◦Q
(P1P2)◦Q= (P1◦Q)×(P2◦Q)
∀a∈ A P◦(aX0) = e
P(a)X0
n
X
k=0
akXk!0
=
n−1
X
k=0
(k+ 1)ak+1Xk
P0= 0 ⇐⇒ P P deg(P0) = deg(P)−1
∀P, Q ∈ A[X]∀a∈ A ,((P+Q)0=P0+Q0
(aP )0=a P 0
∀P, Q ∈ A[X] (P Q)0=P0Q+P Q0
∀P, Q ∈ A[X] (P◦Q)0= (P0◦Q)×Q0
P∈ A[X]k∈(P(0) =P
P(k+1) =P(k)0
s∈s P P (s)
Xk(s)=
k!
(k−s)! Xk−ss<k
s!X0s=k
0s>k
P=
n
X
k=0
akXkP(s)=
0s>n
n
X
k=sk!
(k−s)!akXk−ss6n
∀k>s, k!
(k−s)! =s!Cs
kCs
ks k
s6nP(s)=s!
n
X
k=sCs
kakXk−s
P, Q ∈ A[X]m>1
QmP Qm−1P0∀k∈ {1,· · · , m −1}, Qm−kP(k)
QmP P =QmP1P0=mQm−1Q0P1+QmP0
1=Qm−1×(mQ0P1+QP 0
1)
Qm−1P0
A= 1 2
A