4e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5
(D’après Hachette - Déclic 2011 ch.12)
H. Rorthais (Lycée-Collège N.D. de l’Abbaye à Nantes) http://rorthais.math.free.fr
Ch.12 : Loi binomiale
1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES
Lancer plusieurs fois un dé et noter les résultats successifs.
Prélever des pièces sur une chaîne de fabrication et vérifier si elles sont conformes.
Demander à 2 000 personnes de choisir s'ils trouvent cette peinture de Delaunay (ci-contre) agréable ou
désagréable à regarder.
Toutes ces situations peuvent se modéliser par la répétition d'expériences identiques et indépendantes.
Cette modélisation peut s'appuyer sur une représentation sous forme d'arbres pondérés. Cette représentation
fonctionne suivant le principe multiplicatif : la probabilité d'une liste de résultats est le produit des probabilités de
chaque résultat.
2 ÉPREUVE DE BERNOULLI, SCHÉMA DE BERNOULLI
Une épreuve de Bernoulli est une expérience aléatoire à deux issues : pile ou face, oui ou non, gagner ou
perdre, etc.
On note S (succès) et E (échec) les deux issues d'une épreuve de Bernoulli, et on pose p(S) = p et p(E) = q = 1 p.
La répétition de n épreuves de Bernoulli identiques et indépendantes s'appelle un schéma de Bernoulli.
DÉFINITION 1
Soit X la variable aléatoire comptant le nombre de succès obtenus dans un schéma de Bernoulli à n épreuves, p
désignant la probabilité d'obtenir le succès dans chaque épreuve.
La loi de probabilité de la variable aléatoire X est appelée loi binomiale de paramètres n et p.
Notation :
Cette loi est notée (n ; p).
Exemple :
On lance trois fois de suite une pièce truquée, telle que la probabilité d'obtenir
face soit 0,3. On s'intéresse au nombre de fois où on obtient face. On appelle S
(pour « succès ») l'événement « obtenir face à un lancer » et E (pour « échec »)
l'événement contraire.
On appelle X la variable aléatoire égale au nombre de succès.
X suit une loi binomiale de paramètres n et p, avec n = 3 et p = 0,3.
On réalise un arbre pondéré (ci-contre) et on en déduit la loi de probabilité de
X, en appliquant le principe multiplicatif.
On convient par exemple de noter SEE la succession d'un succès et de deux
échecs.
p(X = 0) = p(EEE) = 0,73 ;
p(X = 1) = p(SEE) + p(ESE) + p(EES) = 3 0,3 0,72 ;
p(X = 2) = p(SSE) + p(SES) + p(SSE) = 3 0,32 0,7 ;
p(X = 3) = p(SSS) = 0,33.
Exercice corrigé :
Utiliser un arbre pondéré pour déterminer la loi d'une variable aléatoire
Dans un salon automobile, un agent commercial propose deux modèles A et B de voitures.
Lorsqu'un visiteur prend rendez-vous avec l'agent, on admet que :
il achète un modèle A avec une probabilité p(A) = 0,1 ; il achète un modèle B avec une
probabilité p(B) = 0,2 ;
il n'achète rien avec une probabilité p(C) = 0,7.
Deux clients prennent rendez-vous dans la journée. On considère que leurs attitudes sont
indépendantes.
1)
a) Construire un arbre pondéré décrivant la situation.
b) Déterminer la probabilité de vendre deux voitures A.
2) La vente d'une voiture A rapporte au vendeur 500 euros de commission et celle d'une voiture B
lui rapporte 300 euros. On appelle X la commission obtenue par le vendeur à la fin de la journée.
a) Déterminer la loi de probabilité de la variable aléatoire X.
4e - programme 2007 - mathématiques ch.12 - cours Page 2 sur 5
(D’après Hachette - Déclic 2011 ch.12)
H. Rorthais (Lycée-Collège N.D. de l’Abbaye à Nantes) http://rorthais.math.free.fr
b) Calculer l'espérance de X. Interpréter le résultat obtenu.
Méthode :
1)
a) Les épreuves (définies par le comportement de
chaque client) sont identiques (la probabilité de
vendre chaque modèle est toujours la même) et
indépendantes (les attitudes des clients sont
indépendantes). On réalise donc un arbre pondéré.
On repère, dans
l'énoncé, les
éventuelles
hypothèses
permettant d'identifier
une succession
d'expériences
identiques et
indépendantes.
b) p(AA) = 0,1 0,1 = 0,01.
On utilise le principe
multiplicatif.
2)
a) X peut prendre comme valeurs :
1 000, 800, 600, 500, 300 ou 0.
p(X = 1 000) = p(AA) = 0,01 ;
p(X = 800) = p(AB) + p(BA) = 0,02 + 0,02 = 0,04 ;
p(X = 600) = p(BB) = 0,04 ;
p(X = 500) = p(AC) + p(CA ) = 0,07 + 0,07 = 0,14 ;
p(X = 300) = p(BC) + p(CB) = 0,14 + 0,14 = 0,28 ;
p(X = 0) = p(CC) = 0,49.
On associe à chaque
valeur prise par X les
chemins qui lui
correspondent dans
l'arbre, puis on utilise
le principe
multiplicatif.
b) E(X) = 0 0,49 + 300 0,28 + 500 0,14 + 0,04 600 + 0,04 800 + 0,01 1 000 = 200.
Sous les hypothèses adoptées, le vendeur peut espérer une commission moyenne sur un grand nombre
de jours de 200 euros par jour.
3 LOI BINOMIALE
3.1 Coefficients binomiaux
On considère une variable aléatoire X suivant une loi binomiale de paramètres n et p.
DÉFINITION ET THÉORÈME
Soit n et k deux entiers naturels tels que 0 k n.
On appelle coefficient binomial et on note
n
k le nombre de chemins dans l'arbre pondéré menant à
l'événement (X = k), c'est-à-dire le nombre de chemins réalisant k succès parmi n épreuves répétées.
Pour tout entier k tel que 0 k n, la loi de probabilité de X est :
p(X = k) =
n
k pk (1 p)n k.
Démonstration :
Il y a
n
k chemins menant à l'événement (X = k) ; chacun comporte k succès et n k échecs, ce qui
correspond, en appliquant le principe multiplicatif, à une probabilité de pk qn k pour chacun de ces
chemins.
Représentation graphique :
d'une loi binomiale avec p = 0,4 et n= 10.
Le « bâton » associé, par exemple à la valeur x = 4, correspond à la probabilité
d'obtenir 4 succès (et donc 6 échecs !) parmi les 10 épreuves.
Remarque :
Le nombre
n
k se lit « k parmi n ».
4e - programme 2007 - mathématiques ch.12 - cours Page 3 sur 5
(D’après Hachette - Déclic 2011 ch.12)
H. Rorthais (Lycée-Collège N.D. de l’Abbaye à Nantes) http://rorthais.math.free.fr
3.2 Propriétés des coefficients binomiaux
PROPRIÉTÉS 1
Symétrie : on a, pour 0 k n :
n
k =
n
n k.
Triangle de Pascal : on a, pour 0 k n :
n
k +
n
k + 1 +
n + 1
k + 1 .
Démonstration du triangle de Pascal :
On considère un schéma de Bernoulli à n + 1 épreuves.
Il y a, par définition,
n + 1
k + 1 chemins qui mènent à l'événement (X = k + 1).
Ces chemins se décomposent en deux parties disjointes :
ceux qui commencent par un succès : l'arbre repsentant les épreuves suivantes (de la deuxième à la
dernière) est alors un arbre de n épreuves, où il reste à choisir k succès : il y a donc
n
k chemins de ce
type possibles.
ceux qui commencent par un échec : l'arbre représentant les épreuves suivantes (de la deuxième à la
dernière) est alors un arbre de n épreuves, où il reste à choisir k + 1 succès : il y a donc
n
k + 1 chemins
de ce type possibles. On obtient ainsi :
n
k +
n
k + 1 =
n + 1
k + 1 .
Illustration du triangle de Pascal :
k
n
0
1
2
3
4
0
1
1
1
1
2
1
2
1
3
1
3
3
1
4
1
4
6
4
1
Autre présentation :
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
3.3 Espérance et variance de la loi binomiale
PROPRIÉTÉ 2
On considère une variable aléatoire X suivant une loi binomiale de paramètres n et p.
L'espérance de X est : E(X) = np.
La variance de X est : V(X) = np(1 p).
Démonstration :
Cette propriété est admise
Exercice corrigé :
Reconnaître une loi binomiale
La « javanaise des jeux » propose à ses clients une tombola, sous la forme
de tickets à acheter. La probabilité qu'un ticket commercialisé soit gagnant
est de 0,2. Un client tire au hasard de façon indépendante dix tickets et les
achète. On appelle X la variable aléatoire dénombrant les tickets gagnants
parmi les dix achetés par ce client.
1)
a) Déterminer la loi de probabilité de X.
b) Représenter graphiquement la loi de probabilité de X.
2) Calculer l'espérance de X. Interpréter ce nombre.
Solution :
Méthode :
1)
a) On est en présence d'une série d'épreuves identiques et indépendantes :
acheter un ticket et examiner s'il est gagnant.
X suit donc une loi binomiale de paramètres n = 10 et p = 0,2.
On a donc, pour 0 k 10 : p(X = k) =
10
k 0,2k 0,810 k.
On a donc le tableau suivant, en arrondissant les valeurs à 0,01 près :
On doit repérer les mots
clés comme
identiques
,
répétition
,
indépendantes, puis
repérer le nombre
d'épreuves n et la
4e - programme 2007 - mathématiques ch.12 - cours Page 4 sur 5
(D’après Hachette - Déclic 2011 ch.12)
H. Rorthais (Lycée-Collège N.D. de l’Abbaye à Nantes) http://rorthais.math.free.fr
k
0
1
2
3
4
5
6
7
8
9
10
p(X = k)
0,11
0,27
0,30
0,20
0,09
0,03
0,01
0
0
0
0
Les valeurs 0 dans le tableau ne correspondent pas à des probabilités nulles,
mais à des arrondis à 0,01 près nuls).
probabilité de succès p.
b)
On peut alors appliquer la formule du cours.
On obtient le tableau en calculant les combinaisons grâce à
la calculatrice, par exemple
10
3.
Un diagramme à bâtons
permet de visualiser la loi
binomiale.
2) On a E(X) = 10 0,2 = 2.
Sur un grand nombre d'achats de « lots » de dix tickets, on peut espérer avoir en
moyenne 2 tickets gagnants sur 10.
On applique la formule
de l'espérance vue dans
le cours.
4 ÉCHANTILLONNAGE
4.1 De quoi s'agit-il ?
On considère une expérience aléatoire et on note p(A) la probabilité d'un événement A donné. On pense
pouvoir affirmer que la probabilité p(A) prend une valeur connue p.
Comment décider que cette affirmation est « raisonnable » ou pas ?
Exemple :
On lance une pièce. On appelle A l'événement : « obtenir pile ». Compte tenu des
procédés de fabrication de la pièce, de sa forme, et du fait qu'elle est neuve, on
pense qu'elle est équilibrée. On est donc conduit à affirmer que p(A) = 1
2 .
Avec les notations ci-dessus, la valeur supposée p de p(A) est donc égale à 1
2 .
Mais comment savoir si un vice de fabrication, par exemple, ne met
pas cette hypothèse en défaut ?
Pour examiner « l'hypothèse p(A) = p », on réalise l'expérience aléatoire un
certain nombre de fois, et on mesure la fréquence f d'apparition de l'événement
A. Si les valeurs de f et de p sont « trop éloignées », en un sens que l’on
précise ci-dessous, on rejettera l'hypothèse. Ce rejet ne peut pas être fait « à
coup sûr » : il faut fixer une « marge d'erreur », ou « seuil ». On fixera le seuil
de 95 %, ce qui signifie que la probabilité de rejeter l'hypothèse p(A) = p, alors
qu'elle est vraie, ne doit pas dépasser 5 %.
Fluctuations de la fréquence
de succès pour 100 échantillons
d'une loi binomiale de paramètres
p = 0,4 et n = 50.
4.2 Le principe de la méthode
4.2.1 L'expérience
On réalise n fois l'expérience aléatoire et on note f la fréquence d'apparition de l'événement A.
4.2.2 Le modèle
On peut modéliser l'expérience par une épreuve de Bernoulli : le succès correspond à l'événement A, et l'échec
à l'événement contraire A de A.
La répétition de cette épreuve n fois, de façon indépendante, est modélisée par un schéma de Bernoulli à n
épreuves.
On appelle X la variable aléatoire dénombrant les succès obtenus au cours des n épreuves.
Si on suppose que p(A) = p, la loi de probabilité de X est la loi binomiale (n ; p), de paramètres n et p.
Si on pose Y = X
n , alors la variable aléatoire Y correspond à la « fréquence théorique » d'obtention du succès
4e - programme 2007 - mathématiques ch.12 - cours Page 5 sur 5
(D’après Hachette - Déclic 2011 ch.12)
H. Rorthais (Lycée-Collège N.D. de l’Abbaye à Nantes) http://rorthais.math.free.fr
au cours des n épreuves (Y est égal au nombre de succès obtenus, divisé par le nombre d'épreuves).
On peut alors comparer la fréquence observée expérimentalement avec cette « fréquence théorique ».
4.2.3 Comparaison entre modèle et résultat expérimental
On examine si la fréquence observée f appartient à « l'intervalle de fluctuation à 95 % » associé à la loi
binomiale (n ; p). Si tel n'est pas le cas, l'hypothèse p(A) = p est rejetée, avec une probabilité inférieure à
0,05 de réaliser un rejet par erreur.
Commentaire
La méthode est basée sur la comparaison empirique-théorique : le résultat d'une expérience (fréquence
mesurée, empirique) est comparé au résultat obtenu à partir d'un modèle (loi de probabilité, théorique).
4.3 Prise de décision à l'aide d'une loi binomiale
DÉFINITION 2
L'intervalle de fluctuation à 95 %, associé à une variable aléatoire X suivant une loi binomiale de paramètres
n et p, est l'intervalle
k1
n , k2
n, ou k1 et k2 sont les deux entiers naturels définis par :
k1 est le plus petit des entiers k rifiant p(X k) > 0,025 ;
k2 est le plus petit des entiers k vérifiant p(X k) 0,975.
Exemple :
On considère une variable aléatoire X suivant la loi binomiale de paramètres 100 et 1
2 . Cette variable
aléatoire modélise 100 lancers d'une pièce de monnaie équilibrée.
À l'aide d'un tableur, on détermine les valeurs de p(X k) pour tous les entiers k entre 0 et 100. L'écran
ci-contre propose les valeurs de k en colonne A, celles de
p(X k) en colonne B. Les valeurs copiées depuis ce
tableau en colonnes D et E permettent d'affirmer :
k1 = 40 et k2 = 60.
Ainsi, l'intervalle de fluctuation à 95 % associé à la
variable aléatoire X est : I =
40
100 , 60
100 = [0,4 ; 0,6].
Remarque :
À l'aide de la calculatrice, on peut obtenir le calcul des valeurs de p(X k).
Voir les fiches Calculatrices, pages 395 et 397.
CRITÈRE DE DÉCISION
On veut examiner l'hypothèse p(A) = p.
Soit f la fréquence d'apparition observée de l'événement A dans un échantillon d'expériences répétées de taille n.
On désigne par I l'intervalle de fluctuation à 95 % associé à la loi binomiale de paramètres n et p.
Si f I, on accepte l'hypothèse.
Si f I, on rejette l'hypothèse avec une probabilité inférieure à 5 % de rejeter une hypothèse pourtant vraie.
Exemple :
On a lancé 100 fois une pièce de monnaie, et le côté pile est apparu 65 fois ; on s'interroge sur la nature
équilibrée de la pièce.
Tester si la pièce est équilibrée, c'est tester l'hypothèse que la sortie de « pile » a une probabilité égale à 0,5.
On a vu ci-dessus que l'intervalle de fluctuation à 95 % associé à la loi binomiale (100 ; 0,5) est
I = [0,4 ; 0,6]. La fréquence observée d'apparition de piles sur les 100 lancers effectués est de 0,65, et on a :
0,65 I. On rejette donc l'hypothèse d'une pièce équilibrée.
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !