d(xn, a)d(xnk)` d(`, a) = d
(f(xnk)) f(`)d(f(`), a) = d ` =a
C fn1−1
nxn∈C fn(xn) = xn
(xn)f
`= lim
n→∞ δ(Kn)xn, yn∈Knd(xn, yn) = δ(Kn)
xn> x yn> y ε > 0 (B(x, ε)∩Kn) (B(y, ε)∩Kn)
B(x, ε)∩K B(y, ε)∩K
δ(K)≥`−2ε
Ui,n ={x∈E B(x, 1/n)⊂Oi}Ui,n E
⇒r= min(1/n)
(un)A un= (un
k) (unp0)
(unp0
0)u0∈[0,1] (unp1) (unp1
0, unp1
1)
(u0, u1)∈[0,1]2(unpk)kA(u0, u1, . . . )
a∈K n ≥1fnx7−→ 1
na+1−1
nf(x)fn
1−1
nK xnx(xn)
f(x) = x