1. Rappels de cours On se place dans un repère orthonormé (O,I,J

publicité
HLMA103 - BIOMATHS - 2014-2015
TRIGONOMÉTRIE - ANNEXE
1. Rappels de cours
On se place dans un repère orthonormé (O, I, J) et on considère le cercle de centre O et de
−→ −−→
rayon 1. Soit x ∈ R un angle exprimé en radians. Le point P du cercle tel que (OI, OP ) = x est
de coordonnées (cos(x), sin(x)). A l’aide du théorème de Thalès, on peut également visualiser
sin(x)
sa tangente tan(x) = cos(x)
sur la droite paramétrée par l’abscisse 1.
J
π
2
P
tan(x)
sin(x)
π
−π
0
x
O
cos(x) I
On remarque que :
π
∀x ∈ 0,
, cos(x) ≥ 0, sin(x) ≥ 0,
2
π
∀x ∈
, π , cos(x) ≤ 0, sin(x) ≥ 0,
2
π
∀x ∈ −π, − , cos(x) ≤ 0, sin(x) ≤ 0,
2
π
∀x ∈ − , 0 , cos(x) ≥ 0, sin(x) ≤ 0.
2
− π2
Pour la tangente, le signe se déduit alors du quotient.
D’après le théorème de Pythagore, on a la :
Proposition 1
(i) Pour tout x ∈ R, cos2 (x) + sin2 (x) = 1.
(ii) Pour tout x ∈ R \ k π2 ; k ∈ Z , 1 + tan2 (x) =
1
.
cos2 (x)
Par ailleurs, les symétries du cercle donne la :
Proposition 2
π
2
Pour tout x ∈ R, on a :
cos(−x) = cos(x),
cos(π − x) = − cos(x),
cos(π + x) = − cos(x),
π
cos
− x = sin(x),
2
π
cos
+ x = − sin(x),
2
sin(−x) = − sin(x),
sin(π − x) = sin(x),
sin(π + x) = − sin(x),
π
sin
− x = cos(x),
2
π
sin
+ x = cos(x).
2
π
2
+x
π−x
π
−π
π+x
− π2 − x
π
2
−x
x
0
−x
− π2 + x
− π2
Il convient de savoir retrouver ces formules à l’aide du cercle trigonométrique comme ci-dessus.
Pour la tangente, on en déduit des formules similaires par quotient.
Elsa Ibanez
1
Trigonométrie
En général, il n’est pas facile de calculer les valeurs exactes des fonctions cosinus, sinus et
tangente. Des considérations géométriques nous permettent de connaître ces valeurs pour les
angles remarquables 0, π6 , π4 , π3 , et π2 .
π
2
Proposition 3
cos(0) = 1,
sin(0) = 0,
√
π
3
=
cos
,
6
2
√
2
π
cos
=
,
4
2
1
π
= ,
cos
3
2
π
cos
= 0,
2
1
π
= ,
6
2
√
2
π
=
sin
,
4
2
√
π
3
=
sin
,
3
2
π
sin
= 1.
2
5π
6
sin
1
2π
3π 3
4
√
π
3
3
2
√
2
2
π
4
1
2
√
π −
−π −1
− 12
3
2
√
1
2
√
− 22
√
2
2
− 12
− 5π
6
− 3π
4 2π
−3
2
2
−1
0
1
−π
π 4
−3
√
−
3
2
− π6
√
−
π
6
3
2
− π2
Pour la tangente, les valeurs correspondantes sont obtenues par quotient.
Afin d’obtenir des valeurs exactes sur d’autres angles, on utilise les valeurs de référence cidessus et les formules de trigonométrie. Les plus courantes sont données dans la proposition 2
et la :
Proposition 4
Pour tout a, b ∈ R, on a :
cos(a + b) = cos(a) cos(b) − sin(a) sin(b),
sin(a + b) = sin(a) cos(b) + cos(a) sin(b),
cos(a − b) = cos(a) cos(b) + sin(a) sin(b),
sin(a − b) = sin(a) cos(b) − cos(a) sin(b).
De nombreuses autres identités connues (duplication, linéarisation, produits) se déduisent de
celles-ci. Elles ne seront pas explicitées.
2. Exercices d’entrainement
Exercice 1. Résoudre les équations sur ]−π, π] :
√
√
3
2
, 2 cos(x) = 1, sin (π + x) =
, tan(x) = 1.
cos(x) = 0, sin(x) = −
2
2
Pour chaque équation, placer la ou les solution(s) sur le cercle trigonométrique.
Solution.
π π
,
x∈ − ,
2 2
2π π
x ∈ − ,−
,
3
3
π π
x∈ − ,
,
3 3
3π π
x ∈ − ,−
,
4
4
Exercice 2. Résoudre les équations sur [0, 2π[ :
√
π
π
3
π
cos x +
= 0, sin x −
=
, 2 cos x +
= 1,
3
6
2
4
3π π
x∈ − ,
.
4 4
√
π
2
sin
− 2x =
.
4
2
Pour chaque équation, placer la ou les solution(s) sur le cercle trigonométrique.
Solution.
x∈
π 7π
,
,
6 6
x∈
π 5π
,
,
2 6
x∈
π 5π
,
,
12 12
π
3π
x ∈ 0, , π,
.
2
2
Exercice 3. Donner l’allure des graphes des fonctions cosinus, sinus et tangente sur [−2π, 2π].
On fera apparaître les angles remarquables.
Elsa Ibanez
2
Trigonométrie
Solution.
cos(x)
πππ
643
π
2
πππ
643
π
2
x
sin(x)
x
tan(x)
x
πππ
643
Exercice 4. Résoudre les inéquations sur [−π, π] :
√
3
cos(x) ≤
, 2 sin(x) − 1 ≤ 0, 2 cos2 (x) ≥ 1.
2
Solution.
π
2π
π
π
3π π
π 3π
x ∈ −π,
∪
, π , x ∈ −π, −
∪
,π , x ∈ − ,−
∪
,
.
3
3
3
3
4
4
4 4
π
Exercice 5. Placer l’angle 12
sur le cercle trigonométrique. A l’aide des valeurs de référence et
des formules de trigonométrie, calculer la valeur exacte de :
π
π
π
cos
, sin
, tan
.
12
12
12
Solution.
π
π π
= − ,
12
3
4
Elsa Ibanez
π
cos
12
√
=
2(1 +
4
√
3)
π
sin
12
,
3
√ √
2( 3 − 1)
=
,
4
π
tan
12
√
( 3 − 1)
= √
.
( 3 + 1)
Trigonométrie
Téléchargement
Random flashcards
Le lapin

5 Cartes Christine Tourangeau

aaaaaaaaaaaaaaaa

4 Cartes Beniani Ilyes

Fonction exponentielle.

3 Cartes axlb48

relation publique

2 Cartes djouad hanane

Créer des cartes mémoire