recurrence-somme-produit-ex-corr

Telechargé par lahrachef26
Σ
S1= 32+ 33+ 34+· · · + 315
S2=1
2+2
4+3
8+4
16 +· · · +10
1 024
S3=a+a2
2+a3
3+· · · +an
n
S4= 2 4+68 + · · · + 50
k=n
X
k=1
(2k+ 1) 4.
k=n
X
k=1
(1)k7.
k=n
X
k=1
32k
k=2009
X
k=945
3 5.
k=n
X
k=1
k(2k21) 8.
k=n
X
k=1
2k+k2+ 2
k=n
X
k=1
(6k2+ 4k+ 1) 6.
k=18
X
k=1
1
3k9.
k=n
X
k=1
2k
3k+1
a b c k>2k5
k(k21) =a
k1+b
k+c
k+ 1
k=n
X
k=2
k5
k(k21)
nN
k=n
X
k=1
(k+ 1)3
k=n
X
k=1
k3
(k+ 1)3
k=n
X
k=1
(k+ 1)3
k=n
X
k=1
k2
PROF : ATMANI NAJIB
1er BAC Sciences Mathématiques BIOF
http://xriadiat.e-monsite.com
X
16i,j6n
ij X
16i6j6n
ij X
16i,j6n
i
jX
16i,j6n
|ij|X
16i,j6n
i2j
1.
k=n
Y
k=2 11
k2.
k=n
Y
k=2 11
k23.
k=n
Y
k=1
(6k3)
n>4 2n6n!
n>1n(2n+ 1)(7n+ 1) 6
n>1
k=n
X
k=1
k×k! = (n+ 1)! 1
nN
k=2n
X
k=1
1
k>1 + n
2
(un)u0= 0 nRun+1 = 2un+ 1
un
(un)u0= 1 nNun+1 =1
3(un+ 4n+ 6) nN
un= 2n+1
3n
(un)u0=u1= 0 u2= 2 nNun+3 = 3un+2 3un+1 +un
un
n Pnn
n= 1
P1Pnn
Pn+1 n+ 1
n
Pn+1
n n
PROF : ATMANI NAJIB
1er BAC Sciences Mathématiques BIOF
http://xriadiat.e-monsite.com
S1=
k=15
X
k=2
3k
S2=
i=10
X
i=1
i
2i
S3=
k=n
X
k=1
ak
k
S4=
i=25
X
i=1
2i(1)i
k=n
X
k=1
(2k+ 1) = 2
k=n
X
k=1
k+
k=n
X
k=1
1 = n(n+ 1) + n=n(n+ 2)
k=2009
X
k=945
3 = 3 ×1 065 = 3 195
k=n
X
k=1
(6k2+ 4k+ 1) = 6
k=n
X
k=1
k2+ 4
k=n
X
k=1
k+
k=n
X
k=1
1 = n(n+ 1)(2n+1)+2n(n+ 1) + n
=n((n+ 1)(2n+ 1) + 2(n+ 1) + 1) = n(2n2+ 5n+ 4)
k=n
X
k=1
(1)k=
k=n1
X
k=0
(1)k+1 =1(1)n
1(1) =(1)n1
2
k=n
X
k=1
k(2k21) = 2
k=n
X
k=1
k3
k=n
X
k=1
k=n2(n+ 1)2
2n(n+ 1)
2=n(n+ 1)(n(n+ 1) 1)
2
=n(n+ 1)(n2+n1)
2
k=18
X
k=1
1
3k=
k=18
X
k=1 1
3k
=
k=18
X
k=0 1
3k
1 = 11
319
11
3
1 = 3
211
319 1 = 1
211
318
k=n
X
k=1
32k=
k=n
X
k=1
9k=
k=n
X
k=0
9k1 = 19n+1
191 = 9n+1 1
81 = 9n+1 9
8
k=n
X
k=1
2k+k2+ 2 =
k=n
X
k=1
2k+
k=n
X
k=1
k2+
k=n
X
k=1
2 =
k=n
X
k=0
2k1 + n(n+ 1)(2n+ 1)
6+ 2n
= 2n+1 2+2n+n(n+ 1)(2n+ 1)
6= 2(2n+n1) + n(n+ 1)(2n+ 1)
6
k=n
X
k=1
2k
3k+1 =1
3
k=n
X
k=1 2
3k
=2
9
k=n
X
k=1 2
3k
=2
9
k=n1
X
k=0 2
3k
=2
9
1(2
3)n
12
3
=2
312
3n
PROF : ATMANI NAJIB
1er BAC Sciences Mathématiques BIOF
http://xriadiat.e-monsite.com
3
a
k1+b
k+c
k+ 1 =ak(k+ 1) + b(k1)(k+ 1) + ck(k+ 1)
(k1)k(k+ 1) =ak2+ak +bk2b+ck2+ck
k(k21)
a+b+c= 0 a+c= 1 b=5b= 5 a=2
c=3
k=n
X
k=2
k5
k(k21) =
k=n
X
k=2
2
k1+5
k+3
k+ 1 =2
k=n
X
k=2
1
k1+ 5
k=n
X
k=2
1
k3
k=n
X
k=2
1
k+ 1 =
2
k=n1
X
k=1
1
k+ 5
k=n
X
k=2
1
k3
k=n+1
X
k=3
1
k=2
k=n1
X
k=3
1
k21 + 5
k=n1
X
k=3
1
k+5
2+5
n3
k=n1
X
k=3
1
k3
n3
n+ 1 =
1
2+2
n3
n+ 1
k=n
X
k=1
(k+ 1)3
k=n
X
k=1
k3=
k=n+1
X
k=2
k3
k=n
X
k=1
k3= (n+ 1)31
(k+ 1)3=k3+ 3k2+ 3k+ 1
k=n
X
k=1
(k+ 1)3=
k=n
X
k=1
k3+ 3
k=n
X
k=1
k2
k=n
X
k=1
k+
k=n
X
k=1
1
k=n
X
k=1
(k+ 1)3
k=n
X
k=1
k3= 3
k=n
X
k=1
k2+ 3
k=n
X
k=1
k+
k=n
X
k=1
1
3
k=n
X
k=1
k2+3
k=n
X
k=1
k+
k=n
X
k=1
1 = (n+1)31 3
k=n
X
k=1
k2+3 n(n+ 1)
2+n= (n+1)31 = n3+3n2+3n
3
k=n
X
k=1
k2=n3+3n2+3n3
2n23
2nn=n3+3
2n2+1
2n=
n(2n2+ 3n+ 1)
2=n(n+ 1)(2n+ 1)
2
k=n
X
k=1
k2=n(n+ 1)(2n+ 1)
6
X
16i,j6n
ij =
i=n
X
i=1
i
j=n
X
j=1
j=
i=n
X
i=1
in(n+ 1)
2=n2(n+ 1)2
4
X
16i6j6n
ij =
j=n
X
j=1
j
i=j
X
i=1
i=
j=n
X
j=1
jj(j+ 1)
2=1
2
j=n
X
j=1
j3+j2=n2(n+ 1)2
8+n(n+ 1)(2n+ 1)
12
X
16i,j6n
i
j=
j=n
X
j=1
1
j
i=n
X
i=1
i=n(n+ 1)
2
j=n
X
j=1
1
j
X
16i6j6n
i
j
X
16i,j6n
|ij|=
j=n
X
j=1
(
i=j
X
i=1
(ji)+
i=n
X
i=j+1
(ij)) =
j=n
X
j=1
(j2j(j+ 1)
2+n(n+ 1)
2j(j+ 1)
2(nj)j) =
j=n
X
j=1 j2(n+ 1)j+n(n+ 1)
2=n(n+ 1)(2n+ 1)
6n(n+ 1)2
2+n2(n+ 1)
2
=n(n+ 1)
22n+ 1
3(n+ 1) + n=n(n+ 1)(2n2)
6=(n1)n(n+ 1)
3
PROF : ATMANI NAJIB
1er BAC Sciences Mathématiques BIOF
http://xriadiat.e-monsite.com
4
X
16i,j6n
i2j=
i=n
X
i=1
i
j=n
X
j=1
2j=n(n+ 1)
2×(
j=n
X
j=0
2j1) = n(n+ 1)
2×(2n+1 11) = n(n+ 1)(2n1)
k=n
Y
k=2 11
k=
k=n
Y
k=2
k1
k=
k=n
Y
k=2
k1
k=n
Y
k=2
k
=
k=n1
Y
k=1
k
k=n
Y
k=2
k
=1
n
k=n
Y
k=2 11
k2=
k=n
Y
k=2
k21
k2=
k=n
Y
k=2
(k1)(k+ 1)
k2=
k=n
Y
k=2
(k1)
k=n
Y
k=2
(k+ 1)
k=n
Y
k=2!2=
k=n1
Y
k=1
k
k=n
Y
k=2
k
×
k=n+1
Y
k=3
k
k=n
Y
k=2
k
=
1
n×n+ 1
2=n+ 1
2n
k=n
Y
k=1
(6k3) =
k=n
Y
k=1
3(2k1) = 3n
k=n
Y
k=1
(2k1) = 3n
k=2n
Y
k=1
k
k=n
Y
k=1
2k
= 3n(2n)!
2n×n!=3
2n(2n)!
n!
Pn2n6n!n
4n= 4 24= 16 4! = 24
Pn2n6n!
2n+1 62n!6(n+ 1)n!=(n+ 1)! 2 n+ 1 n
4Pn+1 Pn
n4
Pnn(2n+ 1)(7n+ 1) 6 n= 1
1×(2 + 1) ×(7 + 1) = 24 6 P1
Pnan=n(2n+ 1)(7n+ 1) an+1 an=
(n+ 1)(2n+ 3)(7n+ 8) n(2n+ 1)(7n+ 1) = (2n2+ 5n+ 3)(7n+ 8) (2n2+n)(7n+ 1) =
14n3+ 16n2+ 35n2+ 40n+ 21n+ 24 14n32n27n2n= 42n2+ 60n+ 24 = 6(7n2+ 10n+ 4)
an+1 an6an6
an+1 6 6
Pn+1 Pnn
1
Pn
k=n
X
k=1
k×k! = (n+1)!1n= 1
k=1
X
k=1
k×k! = 1×1! = 1
2! 1 = 2 1 = 1 P1Pnn
k=n+1
X
k=1
k×k! =
k=n
X
k=1
k×k!+(n+1)(n+1)! = (n+1)!1+(n+1)(n+1)! = (n+1)!(1+n+1)1 =
(n+ 2)! 1Pn+1 Pnn
1
Pn
k=2n
X
k=1
1
k>1 + n
2n= 0
1 1 Pn
k=2n+1
X
k=1
1
k=
k=2n
X
k=1
1
k+
k=2n+1
X
k=2n+1
1
k>1 + n
2+
k=2n+1
X
k=2n+1
1
k
2n1
2n+1
PROF : ATMANI NAJIB
1er BAC Sciences Mathématiques BIOF
http://xriadiat.e-monsite.com
5
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !