Énoncé Partie I. Outils. Partie II. Inégalités. Partie III. Diviseurs

n0nn0Kn, 2nJ
p m vp(m)Np
m p m
vp(m)1vp(mm0) = vp(m) + vp(m0)m m0
nN\ {0,1,2}
J1, nKπ(n)
J1, nKPn
Kn, 2nKRnRn= 1
π(8) = 4, P8= 2 ×3×5×7 = 210, P2n=PnRn
π(n)n14 n17
J17, nK
n14, π(n)n
21
a b m
a m
b m
ab= 1
ab m
b2xc − 2bxc∈{0,1}xb2xc= 2bxc
{x}=x− bxcT
x]0,+[, T (x)=4x
3x(2x)x
2
ln(T(x)) +
ln(T(x)) T+
n!n
2n
n2n
n2
3n2n
k
(1 + 1)2k+1 2k+1
k4k
pJk+ 2,2(k+ 1)Kp2k+1
k
Jk+ 2,2k+ 1K
4k
nN\ {0,1}, Pn4n
λn2(n+1)
n+1 =λn2n
n
1x1x
2x1
nN\ {0,1},2n
n>4n
2n
n!
p n
max {vp(m), m J2, nK}=bln n
ln pc
Vp(n)
Vp(2n)Vp(n)∈ {0,1}εp(n)
qK1, nKqJ1, nKbn
qc
iJ1, Vp(n)K
mJ2, nKvp(m) = i
mJ2, nKvp(m) = i
nN\ {0,1}, vp(n!) =
Vp(n)
X
j=1 bn
pjc
v2(100!) v5(100!)
100!
2n
n
p2n
vp(2n
n)
Vp(n)
X
j=1 b2n
pjc − 2bn
pjc+εp(n)Vp(2n)
pvp((2n
n))2n
2npvp(2n
n)1
pK2
3n, nKvp(2n
n)=0
RnKn, 2nK2n
n
QnN2n
n=QnRn
n5Qn2
3n
n5, Qn(2n)π(2n)42n
3
n98, Rn(2n)n
24n
3n
2,3,5,7,11,13,17
π
n
π(n)
n
21
n17 J17, nK2k+ 1
17 2k+ 1 n8kn1
2
bn1
2c − 7 2
15 16 π(n)
π(n)π(14) + J17, nK
6 + bn1
2c − 7=bn1
2c − 1n
21
α β u v
m=αa =βb ua +vb = 1
α b α
α=uaα +v=um +v=b +v= (+vα)bm=αa = (+vα)ab
x1<bxc ≤ x× −2
2x1<b2xc ≤ 2x× −2
1<b2xc − 2bxc<2
b2xc − 2bxc ∈ Zb2xc − 2bxc ∈ {0,1}
{x}
2x= 2bxc+ 2 {x}2bxc=b2xc ⇔ 2{x} ∈ [0,1[⇔ {x} ∈ [0,1
2[
ln(T(x))
++
ln(T(x)) = ln 4
3x1
2xln xln 2
2x+1
2ln x
ln(T(x)) ln 4
3x T ++
mn m
n!mn
n
2n
n(2n)! (2n)! = (n!)22n
np2n
n
(2n)! p2n
2
3n2n
4n218n= 2n(2n9)
n= 3 4 n5
(1 + 1)2k+1
2k+1
k 2k+1
2k+1k
22k+ 1
k=2k+ 1
k+2k+ 1
2k+ 1 k(1 + 1)2k+1 = 22k+1 = 2 ×4k
2k+ 1
k4k
2k+ 1
k=
k
z }| {
(2k+ 1)(2k)···
k!=(2k+ 1) ···(k+ 2)
k!
2k+ 1 k+ 1 = k+ 2 (2k+ 1) ···(k+ 2) 2k+1
k
Jk+ 2,2k+ 1K(k+ 2) ···(2k+ 1)
2k+1
k
Jk+2,2k+1K2k+1
k
2k+1
k 2k+1
k
(In) : Pn4nn
P2= 2 42= 16, P3= 6 43, P4= 6 44,···
(In)(In+1)
n= 2k+ 1 n+ 1 Pn+1 =Pn
4n4n+1
n= 2k n + 1 = 2k+ 1
k+ 1 Jk+ 2,2k+ 1K
Pn+1 =P2k+1 Pk+1 4k42k+1 = 4n+1
Pk+1
λn=(2n+ 2)!
((n+ 1)!)2
(n!)2
(2n)! =(2n+ 1)(2n+ 2)
(n+ 1)2=2(2n+ 1)
n+ 1
f]− ∞,1]
f(x) = 1x1 + x
2
]− ∞,1] ] − ∞,1[
x]0,1[, f0(x) = 1
21
1x+ 1<0 0 <1x < 1
[0,1]
]− ∞,0] f(0) = 0 ] − ∞,1]
In:2n
n4n
2nn= 2
2n
n=4
2= 6 4n
2n=42
22= 42⇒ I262= 36 (42)2= 32
In⇒ In+1
2(n+ 1)
n+ 1 =2(2n+ 1)
n+ 1 2n
n2(2n+ 1)
n+ 1
4n
2n
In+1
Tn=
2(2n+1)
n+1
4n
2n
4n+1
2n+1 1
Tn=2(2n+ 1)n+ 1
(n+ 1)4n=2n+ 1
2p(n+ 1)n=1 + 1
2n
q1 + 1
n
Tn1f(1
n)0
n!
pJ2, nKVp(n)vp(m)mJ2, nK
m vp(m) = Vp(n)m
pVp(n)mpVp(n)mnVp(n) ln pln nVp(n)ln n
ln p
Vp(n)≤ bln n
ln pc
k=bln n
ln pc ∈ Npkn m =pkvp(m) = k
Vp(n)k=bln n
ln pc
Vp(n)Vp(2n) = bln 2 + ln n
ln pc ≤ 1 + bln n
ln pc=Vp(n)+1
0<ln 2
ln p1
qJ2, nKqJ1, nKkq
qkq n1kn
q1k≤ bn
qc
≤ bn
qc
i1iVp(n)pin
mJ2, nKvp(m) = i pim pi+1
m
J1, nKMipiMi+1
pi+1
vp(m) = im∈ Mim /∈ Mi+1
Mi+1 ⊂ Mi
]{mJ1, nKvp(m) = i}=]Mi]Mi+1 =bn
qic−b n
qi+1 c
]Ω Ω
vp(n!)
vp(n!) =
n
X
m=2
vp(m)
m vp(m) 1 Vp(n)
i m vp(m) = i
vp(n!) =
Vp(n)
X
i=0
i×(m vp(m) = i) =
Vp(n)
X
i=0
ibn
pic−b n
pi+1 c
vp(n!) =
Vp(n)
X
i=0
ibn
pic −
Vp(n)+1
X
i=1
(i1)bn
pic=
Vp(n)
X
i=1 bn
pic
i= 0 i
i=Vp(n)+1 pi> n
V2(100) i2i100 6
26= 64 v2(100) v5(100!)
i
2i
b100
2ic
i
2i
b100
2ic
v2(100!) = 50 + 25 + 12 + 6 + 3 + 1 = 97 v5(200!) = 20 + 4 = 24
100!
24
2n
n
2n
n=(2n)!
(n!)2vp(2n
n) = vp((2n)!) 2vp(n!)
Vp(2n) = Vp(n)Vp(n)+1
vp(2n
n) =
Vp(n)
X
i=1 b2n
pic − 2bn
pic+
0Vp(2n) = Vp(n)
b2n
pVp(2n)cVp(2n) = Vp(n)+1
k=Vp(n)Vp(2n) = k+ 1
0 1
k=Vp(n)pkn<pk+1 2n < 2pk+1 2n
pk+1 <2⇒ b 2n
pk+1 c∈{0,1}
Vp(n)
X
i=1 b2n
pic − 2bn
pic
| {z }
= 0 1
+εp(n)Vp(n) + Vp(2n)Vp(n) = Vp(2n)
Vp(n)
pvp((2n
n))pVp(2n)pbln(2n)
ln pcpln(2n)
ln p= 2n
2np1
2ln(2n)ln pln n
ln p2ln 2
ln pVp(n) = bln n
ln pc ≤ 1
vp(2n
n)Vp(n)1
2
3n<pln 2 + ln nln p+ ln 3 ln n
ln pln(3
2)
ln p<1Vp(n)=0vp(2n
n) = 0
n!2n
n= (2n)(2n1) ···(n+ 1)
Jn+ 1,2nK(2n)(2n1) ···(n+ 1)
n!2n
nRn
n52n2
3n
n2n
QnQn
n
J2
3n, nK
Qn2
3n
Qn
J2,2nKp
pvp((2n
n))2n
π(2n)
(2n)π(2n)
J2n, nKp
p2
3n vp(2n
n)=1
Pb2
3nc42
3n
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !