U0={[x0:. . . :xn]∈KPn, x06= 0}
V0={(x0, . . . , xn)∈Kn+1 \{0}, x06= 0} ∈ Kn+1 \{0}q:Kn+1 \{0} →
KPn. U0
[1 : x1:. . . :xn]
φ0q
Kn→Kn+1 \ {0}
(x1, . . . , xn)7→ (1, x1, . . . , xn)
V0→Kn
(x0, . . . , xn)→x1
x0,...,xn
x0,
U0→Knφ0
φ0
Ui={[x0:. . . :xn]∈KPn, xi6= 0}Ui
Kn{U0, . . . , Un}KPn
U0F0={[x0:x1:. . . :xn]∈KPn, x0= 0}
G0={(x0, . . . , xn)∈Kn+1 \ {0}, x0= 0}
q F0=G0/K∗G0Kn\0
(0, x1, . . . , xn) (x1, . . . , xn)
S1R→S1
x7→ e2iπx R/Z'S1R/Z R
Z
S1×S1'R/Z×R/Z'R2/Z2.
Trev S1×S1
S1×S1→Trev
(θ, φ)7→ ((2 + cos φ) cos θ, (2 + cos φ) sin θ, sin φ)
θ(2cosθ, 2 sin θ, 0)
θ(Oz)φ(0,0,sin φ)
2 + cos φ z = sin φ
T T
[0,1]2[0,1]2→S1×S1
(x, y)7→ (e2iπx, e2iπy)T→S1×S1
x= (x1, . . . , xn)∈Dn||x|| x
f:Dn\{0} −→ Sn⊂Rn+1
x7→ x
||x|| sin(π||x||),cos(π||x||).
||x|| → 0 (0,...,0,1) f
Dn→Snx∈∂Dn=Sn−1
(0,...,0,−1) ∈Sncos(π||x||) = −1||x|| =
1f DnSn\{(0,...,0,−1)}.