q ϕ2
1+. . . +ϕ2
r−ψ2
1−. . . ϕ2
p=ϕ02
1+. . . +
ϕ02
r0−ψ02
1−. . . ϕ02
p0r=r0p=p0
A1−1 0 r1p−1
p+r
p+r=dim(E) =: n p +r=dim(E) =: n
C
q=Paiix2
i+P
i<j
aij xixj
aii a11q a11x2
1+
x1B(x2, . . . , xn) + C(x2, . . . , xn) = a11(x1+B(x2, . . . , xn)
2a)2+ (C(x2, . . . , xn)−B(x2, . . . , xn)2
4a)
aii aij aij
a12 q(x) = ax1x2+x1B+x2C+D=a(x1+C/a)(x2+B/a) + (D−BC/a) =
a/4((x1+x2+ (B+C)/a)2−(x1−x2+ (C−B)/a)2+ (D−BC/a)
Pλiϕ2
i
λi>0<0
ϕ(x, y, z) = x2−2y2+xz +yz = (x+z/2)2−z2/4−2y2+yz = (x+z/2)2−2(y−z/4)2+z2/8−z2/4
(1,2) 1 + 2 = 3
ϕ(x, y, z) = ¯xx + ¯yy + ¯zz + ¯xy + ¯yx −¯yz −¯zy = (x+y)(¯x+ ¯y) + z¯z−¯yz −y¯z= (x+y)(¯x+ ¯y) +
(z−y)(¯z−¯y)−y¯y(1,2) 1 + 2 = 3
(Ax, x)>0>0x6= 0
S+
n, S++
n, H+
n, H++
n
q
p
|ϕ(x, y)|26q(x)q(y)
Q(x+y)6Q(x) + Q(y)