AX =Y A
X=A1Y A1
n Ai=ei
A AX =Y
M MA =U
UX =MY
A
A Mi,j
A=ai,j a1,16= 0 A
ai,1i
A
P1
P1
a1,1
M1
mi,i = 1
mi,1=ai,1
a1,1
(i > 1)
mi,j = 0 (j > 1, j 6=i)
M1det(M1) = 1 M1A a1,1,0, ...0
M1A=αi,j
α2,2αi,2(i > 2) α2,2= 0
A=
3111
1311
1131
1113
A
LU
MA =U M =Mn1Mn2...M1
A=LU L =M1=M1
1...M1
n1
L M1
1...M1
n1M1
k
k
aj,k
ak,k
j=k+ 1...n
(λI A) (λI A)v= 0
λ
A λI A
A(λI A)P(λ)
A A
B(λ)λI A
B(λ)(λI A) = (λI A)B(λ) = P(λ)I
A n ×n A
A
A n2
A I A An
A A
A
A2, A3, A4
I, A, A2, A3, A4
I, A...A4
A
B=
1113
1131
1311
3111
PA
PA
A
PAPA(X) = (Xλ1)×Q(X)
Q(A) = (Aλ1I)
(Aλ1I)×Q(A) = PA(A) = 0
Q(A)(Aλ1I)
(Xλ1)Q(X)PA
U V
U(X)×(Xλ1) + Q(X)×V(X) = 1
U(A)×(Aλ1I) + Q(A)×V(A) = I
Q(A)(Aλ1I)
Q(A)KnKer(A
λ1I)p1λ1p1
B=
1113
1131
1311
3111
P A
P(λ) = det(λI A) = (λλ1)(λλ2)...(λλn) = λnp1λn1p2λn2...pn
s1= (A) = Σλi= Σn
i=1ai,i
sk= (Ak) = Σλk
i(k= 1..n)
p1=s1
2.p2=s2p1.s1
k.pk=skp1.sk1... pk1.s1(k= 1..n)
pk(k= 1..n)
A A A2..An
B(λ)λ n 1
B(λ) = λn1I+λn2B1+...Bn1
B(λ)×(λI A) = P(λ)I
B0=I Bk=ABk1pkI
Bk=Akp1Ak1p2Ak2... pkI
pi(i= 1..n)
P(λ) = det(λI A)
Bi(i= 1..n 1) λ
A
Ai(i= 1..n)
A1=A, p1= (A), B1=A1p1I
A2=AB1, p2=1
2(A2), B2=A2p2I
Ak=ABk1, pk=1
k(Ak), Bk=AkpkI
Bn=AnpnI= 0
p1, p2...pnB1, B2, ...Bn
P(λ)B(λ)
Ak=Akp1Ak1... pk1A
Bk=Akp1Ak1... pk1ApkI
P0(λ)
B(λ)B(λ)λI A bi,j (λ)
V1(λ), ...Vn(λ)λI Adet(λI A)
det(λ0IA) = det(V1(λ)V1(λ0), V2(λ), , ..., Vn(λ))+
det(V1(λ0), V2(λ)V2(λ0), ..., Vn(λ))+...+det(V1(λ0), V2(λ0), ..., Vn(λ)Vn(λ0))
P0(λ0) = lim
λλ0
P(λ)P(λ0)
λλ0
= det(V0
1(λ0), V2(λ0), ..., Vn(λ0))+
det(V1(λ0), V 0
2(λ0), ..., Vn(λ0)) + ... + det(V1(λ0), V2(λ0), ..., V 0
n(λ0))
V0
i(λ0) = ei
det(V1(λ0), V2(λ0), ..., V 0
i(λ0), ..., Vn(λ0)) = bi,i(λ0)
P0(λ0) = Pn
i=1 bi,i(λ0) = (B(λ0)
P(λ) = λnp1λn1p2λn2... pn
B(λ) = λn1I+λn2B1+... +Bn1
P0(λ) = (B(λ)) = λn1(I) + λn2(B1) + ... + (Bn1)
n1p1(n1)λn2p2(n2)λn3...pn1=λn1(I)+λn2(B1)+
... + (Bn1)
(Bi) = pi(ni)
B(λ)×(λI A) = P(λ)I
B0=I Bi=ABi1piI
(Bi) = pi(ni) = (ABi1)npi
pi=(ABi1)
i
p1= (AB0)B1=AB0p1I
p2=(AB1)
2B2=AB1p2I
pi=(ABi1)
iBi=ABi1piI
A=
2112
0 1 1 0
1 1 1 1
1 1 1 0
,
p1, p2, p3p4B1, B2, B3, B4
A A1
A
v
v0=v , vn+1 =Avn/||Avn||
v0
vn
w1, ..., wnAwi=λiwi|λ1|>|λ2|>
... > |λn|
v0=a1w1+a2w2+.... +anwn
Av0=a1λ1w1+a2λ2w2+.... +anλnwn
||Av0||1=µ1
v1=µ1Av0
Av1=µ1A2v0=µ1(a1λ2
1w1+a2λ2
2w2+.... +anλ2
nwn)
||Av1||1=µ2
Av2=µ2µ1(a1λ2
1w1+a2λ2
2w2+.... +anλ2
nwn)
||Avk1||1=µkCk=µk..µ1
vk=µkAvk1
vk=µk..µ1Akv0=µk..µ1(a1λk
1w1+a2λk
2w2+.... +anλk
nwn)
vk=Ckλk
1(a1w1+a2(λ2
λ1
)kw2+...an(λn
λ1
)kwn)'Ckλk
1a1w1
k vkw1Avk'λ1vk
1 / 11 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !