TSI2
φ
φ(λU +µU0, V ) = (λU +µU0)TNV = (λUT+µU0T)NV
=λUTNV +µU0TNV =λφ(U, V ) + µφ(U0, V )
φ
Z=PTU U =P Z P T=P−1
φ(U, U) = φ(P Z, P Z) = (P Z)TN(P Z) = ZT(PTN P )Z
PTNP =PTλI3+M(a, b)P=λP TP+PTM(a, b)P=λI3+D
φ(U, U) = ZT(λI3+D)Z= (λ+ 2a)z2
1+ (λ+b√2)z2
2+ (λ−b√2)z2
3.
λ > max −2a, |b|√2= max(−2a, b√2,−b√2)
λ+ 2a > 0 ; λ−b√2>0 ; λ+b√2>0
φ(U, U)>0
φ(U, U) = 0 =⇒λ+ 2az2
1=λ+b√2z2
2=λ−b√2z2
3= 0
=⇒z1=z2=z3= 0 =⇒Z= 0 =⇒U= 0.
φ
λ > max −2a, |b|√2φR3
λ6max −2a, |b|√2λ6−2a λ + 2a60
U=P
1
0
0
6=
0
0
0
φ(U, U) = λ+ 2a60φ
λ6max −2a, |b|√2φR3