TSI2
no5
(a, b)R2
M(a, b) =
aa b
a a b
b b 0
.
M(a, b) (a, b)R2E
A B R3
EM3(R)
M(a, b)
M(a, b)
M(a, b) = P DP T
D=
2a0 0
0b2 0
0 0 b2
P=1
2
2 1 1
2 1 1
022
.
E
M(a, b)E
A=1
2
1 1 2
112
22 0
ψR3A
R3
λ, a b N =λI3+M(a, b)
U=
x
y
z
V=
x0
y0
z0
R3φ(U, V ) = UTNV
λ, a b φ
R3
1
φ(U, V )φR
Z=PTU P z1, z2z3
Z Z =
z1
z2
z3
φ(U, U) = ZT(λI3+D)Z=λ+ 2az2
1+λ+b2z2
2+λb2z2
3
λ > max 2a, |b|2φR3
A=
11 0
110
0 0 0
B=
0 0 1
0 0 1
1 1 0
a, b R, M(a, b) = aA +bB
E= Vect(A, B)
EM3(R)A B
(A, B)M3(R)
(A, B)Edim E= 2
M(a, b)
a, b R, M(a, b)
P P TM(a, b)P
M(a, b)
χM(a,b)(x) =
xa a b
a x ab
bb x
=
x2a a b
2ax x ab
0b x
(C1C1C2)
=
x2a a b
0x2b
0b x
(L2L2+L1)
χM(a,b)(x) = (x2a)(x22b2) = (x2a)(x2b)(x+2b)
Sp M(a, b)=2a, 2b, 2b
2a6=±2b
2b6=2bb6=±2a
b6= 0
M(a, b)
E2a
(M(a, b)2aI)
x
y
z
=
0
0
0
ax ay +bz = 0
bx +by 2az = 0
(b22a2)z= 0 (bL1+aL2)
bx +by 2az = 0
b6=±2a
b6=0
z= 0
x=y
E2a= Vect
1
1
0
TSI2
E2b
(M(a, b)2bI)
x
y
z
=
0
0
0
((ab2)xay +bz = 0
ax + (ab2)y+bz = 0
bx +by 2bz = 0
(a2b)x+ (ba2)y= 0 (L3+2L1)
(ba2)x+ (2ab)y= 0 (L3+2L2)
bx +by 2bz = 0
b6=±2a
b6=0
x=y
z=2x
E2b= Vect
1
1
2
E2b
(M(a, b) + 2bI)
x
y
z
=
0
0
0
(a+b2)xay +bz = 0
ax + (a+b2)y+bz = 0
bx +by +2bz = 0
(a2b)x+ (b+a2)y= 0 (L32L1)
(b+a2)x+ (a2b)y= 0 (L32L2)
bx +by +2bz = 0
b6=±2a
b6=0
x=y
z=2x
E2b= Vect
1
1
2
X1=1
2
1
1
0
;X2=1
2
1
1
2
;X3=1
2
1
1
2
X1, X2X3
2a, 2b2b
P X1, X2X3
M(a, b) = P DP TD=
2a0 0
0b2 0
0 0 b2
P=1
2
2 1 1
2 1 1
022
.
E
M(a, b)M(a, b)TM(a, b) = I
M(a, b)TM(a, b) = M(a, b)2=
2a2+b22a2+b20
2a2+b22a2+b20
0 0 2a2+b2
b22a2= 0
b2+ 2a2= 1 2b2= 1 L1+L2
4a2= 1 L2L1
a=±1
2
b=±1
2
M(a, b)a=±1
2b=±1
2
A=1
2
1 1 2
112
22 0
=M(1/2,1/2)
A ψ
det A=1
8
1 1 2
112
22 0
=1
8
0 0 22
112
22 0
(L1L1+L2)
=1
8×22×22=1
ψ w ω
ψ1 = 2b b = 1/2
w= (1,1,2)
θRw w
Tr ψ= 2 cos θ+ 1 = Tr A=1
cos θ=1θ=π
ψR(1,1,2)
A
Rw
R3
λ, a b N =λI3+M(a, b)
U=
x
y
z
V=
x0
y0
z0
R3φ(U, V ) = UTNV
R
UT∈ M1,3(R)NV ∈ M3,1(R)
φ(U, V ) = UT×(NV )∈ M1,1(R) = R
φR
φ(U, V ) = φ(U, V )T=UTNV T=VTNTUTT
=VTNU =φ(V, U)
NT=λIT
3+M(a, b)T=λI3+M(a, b) = N
TSI2
φ
φ(λU +µU0, V ) = (λU +µU0)TNV = (λUT+µU0T)NV
=λUTNV +µU0TNV =λφ(U, V ) + µφ(U0, V )
φ
Z=PTU U =P Z P T=P1
φ(U, U) = φ(P Z, P Z) = (P Z)TN(P Z) = ZT(PTN P )Z
PTNP =PTλI3+M(a, b)P=λP TP+PTM(a, b)P=λI3+D
φ(U, U) = ZT(λI3+D)Z= (λ+ 2a)z2
1+ (λ+b2)z2
2+ (λb2)z2
3.
λ > max 2a, |b|2= max(2a, b2,b2)
λ+ 2a > 0 ; λb2>0 ; λ+b2>0
φ(U, U)>0
φ(U, U) = 0 =λ+ 2az2
1=λ+b2z2
2=λb2z2
3= 0
=z1=z2=z3= 0 =Z= 0 =U= 0.
φ
λ > max 2a, |b|2φR3
λ6max 2a, |b|2λ62a λ + 2a60
U=P
1
0
0
6=
0
0
0
φ(U, U) = λ+ 2a60φ
λ6max 2a, |b|2φR3
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !