1ère ST M G – Activité n°4
Second degré
Exercice 1
A l’aide d’identités remarquables, factoriser les expressions suivantes :
A(x) = x21B(x) = x22
C(x) = x2+ 2x+ 1 D(x) = x2+ 6x+ 9
Exercice 2
Résoudre les équations suivantes :
(3x+ 1)(4 2x) = 0 x21 = 0
x2= 3 x24x12 = 0
Exercice 3
On s’intéresse à l’équation du second degré :
x24x12 = 0.
1. Compléter les pointillés pour que l’égalité suivante soit vérifiée :
x24x12 = (x......)216.
2. Factoriser le membre de droite de cette égalité.
3. En déduire les solutions de l’équation x24x12 = 0.
Exercice 4
On considère les polynômes Pet Qsuivants :
P(x) = 2x23x+ 4 Q(x) = x2+x+ 1
1. Tracer à la calculatrice les courbes représentatives de ces deux polynômes, et déterminer
lequel présente un minimum et lequel présente un maximum.
2. Déterminer par le calcul pour quelles valeurs de xces extremas sont atteints puis les
calculer.
1ère ST M G – Activité n°4 1
Exercice 5
Résoudre les équations suivantes :
x2+x+ 1 = 0 x2+x= 1
2t23t+ 1 = 0 3x2+ 5x=2
3t2=t(t+ 1) + 2 (x+ 1)(x+ 3) = 0
(2x+ 1)(x3) = 1 2
t=t+ 1
Exercice 6
Chacun des graphiques suivants est la courbe représentative d’un polynôme du second degré.
Compléter ce qui vous est demandé en faisant une lecture graphique. Pour les nombre acor-
respondant au coefficient du terme du second degré du polynôme, et son discrimant, on
complétera les pointillés par leur signe. Le nombre sest l’abscisse du sommet.
a=... . . . s . . . a =... . . . s ...
Abscisse des racines Abscisse des racines
.............................. ..............................
Tableau de variations : Tableau de variations :
x−∞ +
p(x)
x−∞ +
p(x)
Tableau de signes Tableau de signes
x−∞ +
p(x)
x−∞ +
p(x)
1ère ST M G – Activité n°4 2
a . . . . . . s ... a... . . . s ...
Abscisse des racines Abscisse des racines
.............................. ..............................
Tableau de variations : Tableau de variations :
x−∞ +
p(x)
x−∞ +
p(x)
Tableau de signes Tableau de signes
x−∞ +
p(x)
x−∞ +
p(x)
a . . . . . . s ... a... . . . s ...
Abscisse des racines Abscisse des racines
.............................. ..............................
Tableau de variations : Tableau de variations :
x−∞ +
p(x)
x−∞ +
p(x)
Tableau de signes Tableau de signes
x−∞ +
p(x)
x−∞ +
p(x)
Exercice 7
Résoudre les inéquations suivantes.
x2+x1>0 2x23x+ 1 0
1ère ST M G – Activité n°4 3
x2+ 2x2>0 2x7x2+x
x+ 3
43x0x24x5
52x0
Exercice 8
Les fonctions d’offre fet de demande gd’un bien sont définies par : f(q) = q2+ 2q+ 24 et
g(q) = 0,9q218q+ 134, pour une quantité qvariant de 1à8tonnes.
1. Sur l’écran de la calculatrice, tracer les représentations graphiques de ces deux fonctions
pour qcompris entre 1et 8.
2. Déterminer d’abord graphiquement, puis par le calcul les coordonnées du point d’inter-
section de ces deux courbes.
3. En déduire la quantité d’équilibre du marché offre-demande et le prix d’équilibre.
Exercice 9
Ecrire une algorithme permettant de trouver les éventuelles racines d’un polynôme du second
degré.
Exercice 10
Démontrer si les affirmations suivantes sont vraies ou fausses.
1. Une équation du second degré possède au plus deux solutions.
2. L’intersection entre deux paraboles peut-être d’un seul point.
3. Lorsque le discriminant d’un polynôme du second degré est strictement négatif, le signe
de ce dernier est négatif.
4. Soient fet gdeux polynômes du second degré. Si f(0) > g(0) alors pour tout xR,
f(x)> g(x).
Exercice 11
Une entreprise fabrique des téléviseurs. Chaque mois, elle produit un nombre xde téléviseurs
compris entre 1000 et 6000. Le coût de production, exprimé en euro, de xtéléviseurs est donné
par c(x) = 0,003x2+ 60x+ 48000.
Chaque téléviseur est vendu 89C
=par l’entreprise. On suppose que l’entreprise parvient à vendre
toute sa production.
1. L’entreprise réalise-t-elle un bénéfice lorsqu’elle fabrique et vend 2000 téléviseurs ? 4000
téléviseurs ?
2. On considère l’algorithme suivant :
1ère ST M G – Activité n°4 4
Entrées :
Saisir x(entier entre 1000 et 6000)
Traitement :
cprend la valeur 0,003x2+ 60x+ 48000
rprend la valeur 89x
Sortie :
Afficher rc
Quel est le rôle de cet algorithme ?
3. Traduire cet algorithme sur la calculatrice, et tester le programme avec x= 2000 et
x= 4000.
4. Modifier l’algorithme de façon à afficher "perte" ou "bénéfice".
1ère ST M G – Activité n°4 5
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !