E U
R×E f :UE f(t, x)C1
IRy:IE C1
tI, (t, Y (t)) y0=f(t, y(t)) .
(y1, I1)>(y2, I2)I2I1
y1|I2=y2
f t
x
t(t0, x0)U ut0,x0:
It0,x0E ut0,x0(t0) = x0Cr+1 f
Cr
D={(s, t, x)R×R×E, s It,x}R:D
E R(s, t, x) = ut,x(s)D R f
f
x Cr1R Cr
R
x t x It,x
End(E)
z0(s) = f
x (s, R(s, t, x)) = z(s), z(t0) = IdE.
f
x u :IE
(b, x) (t, u(t)) tb
I(b, x)/U U =V×R
b= sup I < ∞ ∀kVc < b u(t)/K
c<t<b ku(t)k→ ∞ b
f x
I
f(t, x) = f(x)t
Av B
2AλI B λI E1,2
A, B C C
R
y0=f(t, y)f Cr+1 DR×R×E
R:DE Us,t ={xE, s, t, x
D}
ϕs,t :xRs,t,x .
ϕs,t Us,t Ut,s
ϕr,s ϕs,t =ϕr,t .
y0=f(y)Ut={x, (t, 0, x)D}
ϕt=ϕt,0ϕt,s =ϕtϕ1
sϕt+s=ϕtϕs
U E
CrU CrU E
f
y0=f(y)f(Ut, ϕt)ϕt
UtUtf
RU f
ϕtDiffr(U) = {Crdiffeo U U}.
tϕt
Rn
Cr:I×UmRnt mtU
mt(U)
ftmt(U)ft(y) = d
ds ms(x)|s=tmt(x) = y x =m1
t(y)
XRn
d CrxX
xRnVRn0Cr
ϕ:UV
ϕ(XU) = RdV .
URnf:URndCrr1
xU f x Txf y Rnd
f y f1({y})
URnf:URnd
Crf y f1(y)
CrdRnf1(y) =
f:URnCrTxf
f:URdRn
x CrU0x
f(U0)dRn
f:URnRndCf
f:URpRnCr
T f x
U0x f(U0)rang(T xf)
yf(U0)f1(y)dim(ker(Txf))
XCn
dCn
XCd
XRnx
X X x TxX={γ0(0), γ C1,0I
X, γ(0) = x}
TxXRn
d X =f(U)f f(0) = x TxX=im(Txf)
X=f1(y)f TxX=ker(Txf)
CrX, Y Rn,Rp
Crr0r f :XY f Cr0xX
f Cr0
f:XY Crf:XYRpCr
x U x Rng:URp
Crg|XU=f|XV
X, Y f :XY C1Txf:TxXTf(x)Y
vTxX v =γ0(0)
Txf(v)=(fγ)0(0) Tf(x)Y .
E, F Rn
E+F=RnX, Y RnX Y
xXY x X Y
f:XRnC1f y xf1(Y)
Im(Txf)Tf(x)(Y)
X, Z C1f:XZn
C1f Y f1(Y)
codimXf1(Y) = codimZn(Y)
X, Y Z xX
Y, TxX+TxY=TxZ)XY
X Y
X, P, Z Y Z
F:X×PZ Fp:XFp(x) = F(x, p)
Fp(x)
Y F 1
p(Y)FpY
dim(X) + dim(Y) = dim(Z)F1
p(Y)
p
X, Y, P RnYZ
F:X×PZ CF
Y p P FpY
f C20
0T0f= 0 0
TfRn× {0}
0Tf:x(x, Txf)
X C2f:
XRC2f
f C20Rn
0
ϕRnϕ(0) = 0 T0ϕ=Id
f(x) = f(0) + q(ϕ(x)) q
XRnC
lRnl|X
X
X
Crn X X
Uii ϕi:UiVi
Rni, j UiUj6=ϕjϕ1
i=ϕi(UiUj)ϕj(UiUj)
C1ϕiUi
ϕjϕ1
i2
(Ui, ϕi) (Wα, ψα)ψαϕ1
iC1
X
d Cr
f:URqRnCrU f
UU0U f(U0)
f CrU0f(U0)
nPn(R) = {Rn+1}
MMn+1(R)
MPn(R)
fM=fM0⇔ ∃λR, M0=λM .
GLn+1(R)/RIn+1 =PGLn+1(R)Pn(R)
fM=IdPn(R)=S(M) = R PGLn(R)
FRn+1
d+ 1 p(F)Pn(R)
d
H1, H2Rn+1 0/H1H2
(P|H1)1P|H2C
X g 6=exX gx 6=x
G
k{gG, gK K6=∅}
X G
X X/G
X/G
Π : XX/G
ϕi:UiViY
Cr
X G
X Y f :X/G Y Crf:XY
CrG
γ1, γ2C1]ε, ε[X
0γ1(0) γ2(0) = x ϕ :UVRd
xU(ϕγ1)0(0) = (ϕγ2)0(0)
T X ={γ:] ε, ε[X/ '} ,
γ1,'γ20
ϕ:XY Cr0T ϕ :T X T Y, [γ]
[ϕγ]T ϕ Cr01
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !