E U
R×E f :U→E f(t, x)C1
I⊂Ry:I→E C1
∀t∈I, (t, Y (t)) y0=f(t, y(t)) .
(y1, I1)>(y2, I2)I2⊂I1
y1|I2=y2
f t
x
t∀(t0, x0)∈U ut0,x0:
It0,x0→E ut0,x0(t0) = x0Cr+1 f
Cr
D={(s, t, x)∈R×R×E, s ∈It,x}R:D→
E R(s, t, x) = ut,x(s)D R f
∂f
∂x Cr−1R Cr
∂R
∂x t x It,x →
End(E)
z0(s) = ∂f
∂x (s, R(s, t, x)) = z(s), z(t0) = IdE.
f
x u :I→E
(b, x) (t, u(t)) t→b
I(b, x)/∈U U =V×R
b= sup I < ∞ ∀k⊂V∃c < b u(t)/∈K
c<t<b ku(t)k→ ∞ b
f x
I
f(t, x) = f(x)t
Av B
2A−λI B −λI E1,2
A, B C C
R
y0=f(t, y)f Cr+1 D⊂R×R×E
R:D→E Us,t ={x∈E, s, t, x ∈
D}
ϕs,t :x→Rs,t,x .