Généralités sur les probabilités Fichier

publicité
Chapitre II
Généralités sur les probabilités
Table des matières
A Dénition d'une probabilité
1
B Probabilité conditionnelle
2
C Indépendance
4
A Dénition d'une probabilité
Dénition 1
Une probabilité sur un espace mesurable (Ω, F ) est une mesure positive nie de masse
un, i.e. une application P de F dans [0, 1] vériant
1) P (Ω) = 1
P
S
P (An ).
2) pour toute suite (An )n≥1 d'éléments de F deux à deux disjoints P ( An ) =
n≥1
n≥1
Terminologie 2
Les éléments de F sont appelés événements. Si ω ∈ Ω est tel que {ω} ∈ F , {ω} est
appelé événement élémentaire.
Propriété 3
1. P (Ac ) = 1 − P (A), car P (A) + P (Ac ) = P (A ∪ Ac ) = P (Ω) = 1
2. ∀A, B ∈ F P (A) + P (B) = P (A ∪ B) + P (A ∩ B) (car 1A + 1B = 1A∩B + 1A∪B )
S
P
3. pour toute suite (An )n≥1 d'éléments de F P ( An ) ≤
P (An )
n≥1
4. pour toute suite croissante (An )n≥1 d'éléments de F
C'est une conséquence du théorème de Beppo LEVI.
5. pour toute suite décroissante (An )n≥1 d'éléments de F
n≥1
lim P (An ) = P (
n→∞
n→∞
An )
n≥1
lim P (An ) = P (
C'est une conséquence du théorème de convergence dominée.
1
S
T
n≥1
An )
Remarque 4
Si ν est une mesure nie non nulle sur (Ω, F ), P =
ν
est une probabilité. On en
ν(Ω)
déduit que les propriétés 2 à 5 sont vériées par les mesures nies.
Exercice 5
TSoit (An )n≥1 une suite de F telle que pour tout n ≥ 1 P (An ) = 1. Montrer que
P ( An ) = 1.
n≥1
Exemple 6 (Mesure de Dirac)
Soit (Ω, F ) un espace probabilisable quelconque, et a un élément de Ω. On appelle mesure
de Dirac en a la probabilité noté δa et dénie par
∀A ∈ F
δa (A) = 1A (a).
Si f est une application mesurable de (Ω, F ) dans R, f est intégrable, et
R
f d(δa ) = f (a).
Exercice 7
Donner une formule pour P (A ∪ B ∪ C).
B Probabilité conditionnelle
Dénition 8
Soit B un événement de (Ω, F ) tel que P (B) > 0. Pour tout événement A on appelle
probabilité conditionnelle de A sachant B le réel
P (A|B) = PB (A) =
P (A ∩ B)
.
P (B)
Propriété 9
L'application PB est une probabilité, qui vérie P (B) = 1 et P (B c ) = 0.
Preuve
1. Pour tout A ∈ F on a PB (A) ∈ [0, 1] puisque P (A ∩ B) ≤ P (B).
2. P (Ω) =
P (Ω∩B)
P (B)
= 1.
2
3. Si (An )n≥1 est une suite d'éléments de F deux à deux disjoints, les événements
(An ∩ B)n≥1 sont aussi deux à deux disjoints ; donc
PB (∪n≥1 An ) = P (B)−1 P [(
[
An ) ∩ B)]
n≥1
−1
= P (B) P [(
[
(An ∩ B)]
n≥1
= P (B)−1
X
P (An ∩ B)
n≥1
=
X
PB (An ).
n≥1
Propriété 10
1. Si P (B) > 0, on a P (A ∩ B) = P (A|B) × P (B).
2. Si de plus P (A ∩ B) > 0, on a
P (A ∩ B ∩ C) = P (C|A ∩ B) × P (A ∩ B) = P (C|A ∩ B) × P (A|B) × P (B).
Dénition 11
On appelle système complet d'événements de l'espace probabilisé (Ω, F , P ) une partition
mesurable de Ω composée d'événements de probabilité strictement positive, i.e. une suite
(B1 , ..., Bn ) vériant
a) ∀i ∈ [1..n] Bi ∈ F
b) ∀i 6= j ∈ [1..n] Bi ∩ Bj = ∅
c) ∀i ∈ [1..n] P (Bi ) > 0.
Propriété 12 (Formule des probabilités totales)
Si (B1 , ..., Bn ) est un système complet d'événements, pour tout événement A
P (A) =
n
X
P (A|Bi ) × P (Bi ).
i=1
Preuve
La formule résulte de l'égalité A =
n
S
(A ∩ Bi ) qui implique
i=1
P (A) =
n
X
P (A ∩ Bi ) =
i=1
n
X
i=1
Cas particulier
3
P (A|Bi ) × P (Bi ).
Si P (B) ∈]0, 1[, (B, B c ) est un système complet d'événements ; en conséquence pour
tout événement A
P (A) = P (A|B) × P (B) + P (A|B c ) × P (B c ).
Propriété 13 (Formule de Bayes)
Si A et B sont des événements tels que P (A) > 0 et P (B) > 0
P (A|B) = P (B|A) ×
P (A)
.
P (B)
Preuve
La formule résulte de l'égalité
P (A ∩ B) = P (A|B) × P (B) = P (B ∩ A) × P (A).
Corollaire 14
Si de plus P (Ac ) > 0, on a vu que
P (B) = P (B|A) × P (A) + P (B|Ac ) × P (Ac ),
si bien que
P (A|B) =
P (B|A) × P (A)
.
P (B|A) × P (A) + P (B|Ac ) × P (Ac )
Exemple 15
Trois boîtes d'ampoules B1 , B2 et B3 possèdent la composition suivante :
- B1 contient 4 ampoules défectueuses et 6 ampoules non défectueuses
- B2 contient 1 ampoule défectueuse et 5 ampoules non défectueuses
- B3 contient 3 ampoules défectueuses et 5 ampoules non défectueuses .
On choisit au hasard une boîte dans laquelle on prélève une ampoule. Sachant que l'ampoule
prélevée est défectueuse, quelle est la probabilité pour qu'elle provienne de la boîte B1 ?
Réponse
48
113
C Indépendance
Dénition 16
Deux événements A et B de l'espace probabilisé(Ω, F , P ) sont indépendants (par rapport
à P ) si P (A ∩ B) = P (A) × P (B).
4
Dénition 17
Trois événements A, B et C de l'espace probabilisé(Ω, F , P ) sont indépendants (par
rapport à P ) si
- P (A ∩ B) = P (A) × P (B), P (B ∩ C) = P (B) × P (C) et P (C ∩ A) = P (C) × P (A)
- P (A ∩ B ∩ C) = P (A) × P (B) × P (C).
Propriété 18
1. Si deux événements A et B sont indépendants, les couples d'événements (A, B c ), (Ac , B)
et (Ac , B c ) sont indépendants :
P (A ∩ B c ) = P (B) − P (A ∩ B)
= P (B) − P (A) × P (B)
= P (B)[1 − P (A)]
= P (B) × P (Ac )
2. Tout événements A est indépendant de tout événement B vériant P (B) = 0 ou P (B) =
1.
3. Si P (B) > 0, A et B sont indépendants si et seulement si P (A|B) = P (A).
Principe empirique
Des événements empiriquement indépendants sont probabilistiquement indépendants.
5
Téléchargement