pZ/p2Z
n2n2+ 13n+ 20
P=
0−1−1
−1 0 −1
1 1 2
R3P
A∈ M3,2(R)B∈ M2,3(R)P=AB BA =I2
E n f ∈ L(E)fn−1̸= 0 fn= 0
aB=a, f(a), f2(a), . . . , fn−1(a)E
f
g E f P
g=P(f)g(a)B
F G E
f∈ L(E) Ker f=FIm f=G
E n f ∈ L(E) Φ L(E)−→ L(E)g7−→ g◦f
Φf
L1L2L(E)E n
∀(u, v)∈L1×L2u◦v+v◦u= 0
p1∈L1p2∈L2Id = p1+p2n=
rg(p1) + rg(p2)
u∈L1x∈Im p2u(x) = 0 x∈Ker p2u(x)∈Ker p2
dim(L1)6n−rg(p2)2dim(L2)
rg(p1) = 0 rg(p1) = n L1={0}L2={0}
A B Mn(C)A B3= 0 AB =BA
A+B
M=A B
C D∈ M2n(C)A∈ Mn(C)
rg M=n D =CA−1B M
A= (aij )∈ Mn(C) (i, j)aij a i =j b i < j c i > j
b̸=c J Mn(C)
x7−→ det(A+xJ)xdet A
det A b =c
ERf∈ L(E)\ {0}f3+f= 0
x∈E x =y+z y ∈Ker f z ∈Ker(f2+ IdE)y=x+f(x)
z=−f2(x)
E= Ker f⊕Ker(f2+ IdE)
∈Ker(f2+ IdE)\ {0}x, f(x)Ker(f2+ IdE)
det(−IdE) dim Ker(f2+ IdE)=2
BE f
0 0 0
0 0 −1
0 1 0
▹ ◃