pZ/p2Z
n2n2+ 13n+ 20
P=
011
1 0 1
1 1 2
R3P
A∈ M3,2(R)B∈ M2,3(R)P=AB BA =I2
E n f ∈ L(E)fn1̸= 0 fn= 0
aB=a, f(a), f2(a), . . . , fn1(a)E
f
g E f P
g=P(f)g(a)B
F G E
f∈ L(E) Ker f=FIm f=G
E n f ∈ L(E) Φ L(E)→ L(E)g7−gf
Φf
L1L2L(E)E n
(u, v)L1×L2uv+vu= 0
p1L1p2L2Id = p1+p2n=
rg(p1) + rg(p2)
uL1xIm p2u(x) = 0 xKer p2u(x)Ker p2
dim(L1)6nrg(p2)2dim(L2)
rg(p1) = 0 rg(p1) = n L1={0}L2={0}
A B Mn(C)A B3= 0 AB =BA
A+B
M=A B
C D∈ M2n(C)A∈ Mn(C)
rg M=n D =CA1B M
A= (aij )∈ Mn(C) (i, j)aij a i =j b i < j c i > j
b̸=c J Mn(C)
x7−det(A+xJ)xdet A
det A b =c
ERf∈ L(E)\ {0}f3+f= 0
xE x =y+z y Ker f z Ker(f2+ IdE)y=x+f(x)
z=f2(x)
E= Ker fKer(f2+ IdE)
Ker(f2+ IdE)\ {0}x, f(x)Ker(f2+ IdE)
det(IdE) dim Ker(f2+ IdE)=2
BE f
0 0 0
0 0 1
0 1 0
▹ ◃
R
φC[X]φ(P)(X) = XP (X)
C(R,R)
A= (aij )∈ Mn(C)an,1=1a1,n = 1
rg A A
AnnN
E n >2φ E
aE\ {0}f E E x 7−x+φ(x)a
f E 1f
Ker(fIdE)
f
f P R3[X]
X2P X41
fR3[X]
(xa)(xb)ynxy =ky a b k R
fCn[X]f(P)(X) = (Xa)(Xb)P(x)nXP (X)f
Cn[X]
fdet f
HCE f ∈ L(E)
f(H)H λ CIm(fλIdE)H
f∈ L(C3)
3 1 2
1 1 0
112
u E u3=u u
E1, . . . , Epu F E u
Ei
A∈ Mn(R)A3=A+InAMn(C)
X3X1
det A > 0
A∈ Mn(R)A2+t
A=In
A
A A InA
n= 3 tr A̸= 0
A B C Mn(R)C=A+B C2= 2A+ 3B C3= 5A+ 6B
C A B
A∈ Mn(C)PC[X]P(A)
A
f E P
f P (0) = 0 P(0) ̸= 0 E= Ker fIm f
M∈ Mn(C)M M2
M
EKn f ∈ L(E)n
g∈ L(E)gf=fg
f g f g
PKn1[X]g=P(f)
▹ ◃
A∈ M3(R)A2=
1 0 0
1 2 0
1 2 3
E f ∈ L(E) rg f= 1 f
tr f̸= 0
A B Mn(C)
A B X
Y U =XtY AU =UB U ̸= 0
U∈ Mn(C)AU =UB
AkU=UBkkNA B
n+ 1 a0, . . . , anE=Rn[X]
(P|Q) = n
k=0 P(ak)Q(ak)
F=PE|n
k=0 P(ak) = 0XnF
u E
v= IdEuKer v= (Im v)
xE n Nfn(x) = 1
n+ 1
n
k=0
uk(x)fn(x)
xKer v
E n u ∈ L(E)
n
k=1ek|u(ek)(e1, . . . , en)
n
j=1 n
k=1ej|u(fk)2(e1, . . . , en)
(f1, . . . , fn)
a b E
u u(x) = (a|x)a+ (b|x)b E
Ker u u
A∈ Mn(R) (tr A)26(rg A) tr(A2)
A∈ Mn(R) Φ M∈ Mn(R)7−AM MA
(X1, . . . , Xn)Mn,1(R)
A
(i, j)[[1, n]]2Mij =XitXjMij
Φ
λ1, . . . , λpA q1, . . . , qp
rg Φ qi
A∈ Mn(R)t
A=A
XtXAX = 0
B∈ Mn(R)A+B
A∈ Mn(R)
t
AA A = 0
u E
u(x)6xxE
xKer(uIdE)Im(uIdE)y u(y)y=x k Nuk(y)
x y
E= Ker(uIdE)Im(uIdE)
E∥ ∥F
F E
▹ ◃
nNxex=n
Run
nNun[n, n + 1] (un)
unn
nNx+x2+···+xn= 1
R+xn
(xn)
un
un=
n
k=1
1
n+kn+
vn=
n
k=1
ln1 + 1
n+kn+
>1
1
n(n+ 1)
(a, b)R2nNun= ln n+aln(n+ 2) + bln(n+ 3) (a, b)
n>1un
un= ln2n+ (1)nln(2n)
+
k=1
(1)n
n=ln 2
+
k=11
2k11
2k+
k=11
2k+ 1 1
2k
(a, b, c)R31
4X3X=a
X+b
2X1+c
2X+ 1
+
k=1
1
4k3k
+
1
dt
4t3t
cosπn2lnn+ 1
n
a0,π
2bR
+tana+b
nn
a b
g[0,1] RH x [0,1] 7−1
0|xt|g(t)dt
H C2[0,1] H′′
(a, b)R2f x 7−H(x) + ax +b f′′ = 2g
f(0) = f(1) = 0
aRE C1[0,1] Rf(0) = 0
f(1) = ainf1
0f(t)2dt;fEfE f(x) = x
0f(t)dt
fR+Ca b 0< a < b
lim
x0+b
1
f(t)
tdt = lim
x0+bx
ax
f(t)
tdt
+
1
f(t)
tdt lim
x0++
x
f(at)f(bt)
tdt =
1
0
t1
ln tdt = ln 2
▹ ◃
I=+
0
sin5x
x2dx
xRsin5x=sin(5x)5 sin(3x) + 10 sin x
16
A > 0+
A
sin5x
x2dx =1
1610 5A
A
sin x
x2dx 15 5A
3A
sin x
x2dx
I
nNIn=1
0(1 x)ne2xdx
(In)
nNInIn+1 (nIn)
(a, b, c)R3In=a+b
n+c
n2+o1
n2+
nNIn=+
0
ln(1 + x/n)
x(1 + x2)dx
(In) (nIn)n+
shx= 1
nNIn=ln(1+2)
0(sht)ndt (In)
n>2nIn+ (n1)In2=2
In
nNBn=+
1
dt
1 + t+t2+··· +tn
n Bn
(Bn)
(1)nBnBn
un= (1)nπ/2
0cosnt dt
f x 7−1
0
tx
t+ 1 dt
D f
xD f(x) + f(x+ 1) f
g x 7−+
0
ext
t+ 1 dt R
+
g
g++
0
et2dt =π
2x > 0F(x) = +
0
1ext2
t2dt
f∈ C(R,R)g(x) = f(x)f(0)
xx̸= 0 g(0) = f(0)
xRg(x) = 1
0f(xt)dt g ∈ C(R,R)
nNt[0, π/2] fn(t) = cosntsin t
n>0fn[0, π/2]
(fn)
f x 7−+
n=0 ln(1 + enx)D f
f D D
▹ ◃
1 / 8 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !