Feuille TD 3 : probabilités conditionnelles, indépendance

publicité
Université de Nice-Sophia Antipolis -L2 MASS - Probabilités
Feuille TD 3 : probabilités conditionnelles, indépendance
Exercice 1
Dans cet exercice, nous supposons pour simplier que les yeux d'un être humain sont soit de
couleur bleue soit de couleur marron.
Le gène de la couleur bleue est supposé récessif :
faut avoir être hérité des deux parents pour qu'il soit eectivement exprimé.
il
Le génotype
correspondant s'écrit bb. Les autres s'écrivent Mb et MM.
La soeur de François Pignon a les yeux bleus, mais ses parents les yeux marrons. Quelle est la
probabilité que François Pignon ait les yeux bleus ?
Exercice 2
On lance deux dés. Quelle est la probabilité qu'au moins l'un d'entre eux donne 6 sachant que
les deux dés achent des résultats diérents ?
Exercice 3
Un lot de 100 dés contient 25 dés pipés dont la probabilité de sortie du 6 est 1/2. Un dé est
choisi au hasard et lancé : il donne 6. Quelle est la probabilité qu'il soit pipé ?
Exercice 4
Considérons l'ensemble
{1, 2, 3, 4}
muni de la probabilité uniforme et les événements
A = {1, 2}, B = {2, 3}, C = {3, 4}.
A et B sont indépendants, B et C
A, B et C ne sont pas indépendants.
Montrer que
mais que
sont indépendants,
A
et
C
sont indépendants,
Exercice 5 :
X et Y variables aléatoires
indépendantes de loi de Bernoulli de paramètres p ∈]0, 1[ et q ∈]0, 1[. Calculer la loi du produit
XY .
Soit
(Ω, P)
un espace de probabilité au plus dénombrable muni de
Exercice 6 :
Dans une boîte il y a 10 boules : 6 boules noires et 4 boules blanches. On eectue un tirage
d'une boule au hasard puis sans remettre la boule tirée, on fait un second tirage d'une boule.
On note X la variable aléatoire prenant la valeur 1 si le premier tirage donne une boule noire
et la valeur 2 si le premier tirage donne une boule blanche.
On note Y la variable aléatoire
prenant la valeur 1 si le second tirage donne une boule noire et la valeur 2 si le second tirage
donne une boule blanche.
1. Déterminer la loi de probabilité de
2. Déterminer la loi du couple
(X, Y ).
X.
Présenter les résultats sous forme de tableau.
3. Donner la loi de la variable aléatoire
Z
égale au produit
XY .
Exercice 7
Une compagnie d'assurance répartit ses assurés en trois catégories : conducteur à faible risque,
conducteur à risque moyen et conducteur à haut risque. Les statistiques de la compagnie indiquent que la probabilité d'accident sur une période de un an est 0,05, 0,15 et 0,30 selon la
catégorie. Par ailleurs, la répartition des assurés est la suivante : 20% sont à bas risque, 50%
à risque moyen et 30% à haut risque. Un assuré est choisi au hasard : quelle est la probabilité
qu'il ait un accident au cours de l'année ? Sachant que l'assuré n'a pas eu d'accident lors de
l'année écoulée, quelle est la probabilité qu'il soit à faible risque ?
Exercice 8
Une banque révise sa politique de carte de crédit avec un rappel d'une partie de celles-ci. Par
le passé, environ 5% des détenteurs d'une carte de crédit ont été insolvables et la banque a été
incapable de recouvrer les soldes impayés. Par conséquent, la direction a estimé égale à 0,05 la
probabilité qu'un détenteur de carte de crédit soit insolvable. La banque a également découvert
que la probabilité de ne pas honorer un paiement mensuel est de 0,2 pour les clients solvables.
Bien entendu, la probabilité de ne pas honorer un paiement mensuel pour les clients insolvables
est de 1.
1. Sachant qu'un client n'a pas honoré un paiement mensuel, calculer la probabilité a posteriori
que le client soit insolvable.
2. La banque voudrait reprendre sa carte de crédit si la probabilité qu'un client soit insolvable
est supérieure à 0,20. La banque devrait-elle reprendre sa carte de crédit si le client n'honore
pas un paiement mensuel ? Pourquoi ?
Exercice 9 :
Dans une famille de deux enfants, quelle est la probabilité que le cadet soit une lle sachant
que l'aîné est un garçon ? Sachant que l'un des deux est un garçon, quelle est la probabilité
que l'autre soit une lle ?
Exercice 10 :
(On pourra utiliser l'exercice précédent.) Lorsque le téléphone sonne dans une famille de deux
enfants composée exactement d'une lle et un garçon, la lle répond, en l'absence des parents,
avec probabilité
p.
Les Castagnier ont deux enfants.
Ils les ont laissés seuls pour la soirée.
Le téléphone
sonne. Une lle décroche l'appareil. Quelle est la probabilité que l'autre enfant soit un garçon ?
Exercice 11
Considérons le lancer de deux dés et les événements :
A = {1, . . . , 6} × {1, 2, 5},
B = {1, . . . , 6} × {4, 5, 6},
C = {(i, j) ∈ {1, . . . , 6}2 : i + j = 9}.
Montrer que
C
P(A ∩ B ∩ C) = P(A)P(B)P(C) mais que A et B ne sont
A et C ne sont pas indépendants.
pas indépendants,
B
et
A, B
et
C
ne sont pas indépendants, et que
Exercice 12
Soit
(Ω, P)
un espace de probabilité au plus dénombrable muni de trois événements
indépendants. Montrer que
A
est indépendant de
B ∪ C.
Exercice 13
Un signal est transmis le long de
n
relais montés en série. Pour simplier, le signal est réduit
à un 0 ou un 1. Chaque relais transmet le signal avec probabilité
0<p<1
et le déforme 1 en
0 ou 0 en 1 avec probabilité 1 − p. Les relais fonctionnent indépendamment les uns des autres.
(k)
(k)
1. On note pc
(pe ) la proba que le signal à la sortie du relais k soit correct (incorrect).
Montrer que
(k)
= pp(k)
p(k+1)
c + (1 − p)pe
c
p(k+1)
= (1 − p)pc(k) + pp(k)
e
e
2. Montrer que ce résultat peut se mettre sous la forme
p~(k+1) = T p~(k)
où
(k)
pc
(k)
pe
p~(k) =
et
T
que matrice
2×2
!
que l'on précisera.
3. Calculer sous forme matricielle la proba que le signal à la sortie des
n
relais soit correct.
Exercice 14 :
Deux joueurs jouent au jeu suivant : un dé à six faces est lancé suivi d'une pièce à pile ou face.
A gagne, en euro, le résultat du dé si la pièce tombe sur pile et perd, en euro, le résultat du dé si la pièce tombe sur face. Modéliser l'expérience et donner la loi du gain du joueur A.
Le joueur
Exercice 15 :
On choisit au hasard un salarié d'un secteur d'activité. On note
qui peut prendre les valeurs H ou F, et
Y
X
la variable aléatoire sexe,
la variable aléatoire niveau de salaire, qui peut
prendre les valeurs faible, intermédiaire, élevé. On sait qu'il y a dans ce secteur 60% de
femmes. Que 40% des salariés ou un salaire faible, et 40% également un salaire intermédiaire.
1. On suppose que les variables aléatoires
X
et
Y
sont indépendantes. Construire le tableau
donnant la loi du couple dans ce cas.
2. En réalité, la loi du couple
(X, Y )
est donnée par le tableau suivant :
X Y faible interm. élevé
homme 0.1
0.15
0.15
femme
0.3
0.25
0.05
Donner la loi de
menter.
Y
sachant que
X =homme,
et la loi de
Y
sachant que
X =femme.
Com-
Téléchargement