http://xmaths.free.fr TS
Lois de probabilités à densité
Corrections
Exercice 05
On choisit un nombre réel α au hasard dans [0 ; 1].
α correspond donc à une variable aléatoire suivant la loi uniforme sur [0 ; 1].
La fonction de densité est définie par f(t) = 1
1 - 0 = 1 .
Pour tout u ∈ [0 ; 1] et tout v ∈ [0 ; 1] tels que u £ v on a p(u £ X £ v) = v - u
1 = v - u
La probabilité que α soit inférieur à 0,95 sachant qu'il est supérieur à 0,6 est p
[0,6 ; 1]
([0 ; 0,95]).
La formule des probabilités conditionnelles permet d'écrire :
p
[0,6 ; 1]
([0 ; 0,95]) = p([0 ; 0,95]∩[0,6 ; 1])
p([0,6 ; 1]) = p([0,6 ; 0,95])
p([0,6 ; 1]) = 0,95 - 0,6
1 - 0,6 = 0,35
0,40 = 0,875
La probabilité que α soit inférieur à 0,95 sachant qu'il est supérieur à 0,6 est 0,875 .
La probabilité que α ait pour deuxième chiffre après la virgule un multiple de 3 sachant qu'il est supérieur à
0,963 est p
[0,963 ; 1]
([0,963 ; 0,97[∪[0,99 ; 1[).
On a p
[0,963 ; 1]
([0,963 ; 0,97[∪[0,99 ; 1[) = p([0,963 ; 0,97[∪[0,99 ; 1[)
p([0,963 ; 1]) = 0,007 + 0,01
0,037 = 0,017
0,037
La probabilité que α ait pour deuxième chiffre après la virgule un multiple de 3 sachant qu'il est supérieur à
0,963 est 0,017
0,037 soit environ 0,459 .