Chapitre 11 Calcul littéral
I Bilan des squelettes du cube
Nous avons obtenu plusieurs formules qui permettent toutes de toujours trouver le bon résultat.
On en déduit que ces formules sont toutes identiques, même si elles ne sécrivent pas de la même façon.
On utilise le signe « = » pour dire que deux formules sont identiques.
Le nombre de cubes sur une arête est désigpar la lettre « » pour gagner de la place :
                      
Un objectif de cette leçon est de pouvoir comparer ces formules et de pouvoir prouver quelles sont
identiques.
II Règles de base du calcul littéral
On ne peut pas calculer avec des lettres tant quon ne connait pas la valeur de la lettre, mais il existe des
astuces qui permettent de modifier une expression en une autre plus simple :
- On a le droit de supprimer le signe si il est placé devant une lettre ou devant une parenthèse :
   
- On peut additionner des quantités de la même lettre :     ou    
- On peut supprimer le nombre 1 quand il est devant une lettre :     
Lorsquon utilise ces règles, on dit quon réduit une expression.
A quoi ça sert ?
Ces règles sont utiles pour répondre aux consignes : « réduire les expressions suivantes ».
Voir les exercices 11 à 13 page 67 du manuel (Phare 4ème). Ces exercices ont été corrigés en classe.
III Distributivité
Exemple :
        
On se sert en réalité dune règle apprise en classe de 5ème appelée « distributivité ».
Exemple géométrique utilisant la distributivité :       
Laire du grand rectangle peut être calculée de 2 manières différentes :
Somme de laire des 2 rectangles ou bien longueur largeur du grand rectangle.
Quelle que soit la formule utilisée, on obtient le même résultat ce qui permet dutiliser le symbole « = ».
Vers la double distributivité
Autre exemple géométrique : calculer laire de ce rectangle en utilisant 2 méthodes différentes.
1ère méthode : calcul de laire totale 2ème méthode : somme de laire des 4 rectangles
                  
Si on retire le signe devant les lettres ou devant les parenthèses, on obtient une égalité équivalente mais
un peu plus « légère » à lire.
          
Comment se souvenir dune telle formule ?
On dessine une « double flèche flèche » :
Pour napprendre quune seule formule, on peut éventuellement avoir a, b, c et d négatifs. On applique
alors la règle de multiplication des signes : le produit de deux nombres de même signe est positif. Le
produit de deux nombres de signe contraire est négatif.
IV Développer et factoriser
a. Nature dune expression
Une expression peut avoir 4 natures différentes : une somme, une différence, un produit ou un quotient.
Pour connaître la nature dune expression, il suffit de savoir quelle est la dernière opération que lon réalise
si on respecte lordre des priorités (dabord les multiplications et les divisions de gauche à droite, puis les
additions et les soustractions de gauche à droite).
Par exemple :
     est une somme.
     est un produit.
b. Développer
Développer une expression, cest la transformer en somme ou en différence.
Exemple : Développer     
On a un produit et il faut écrire une expression égale qui soit une somme. On utilise la distributivité (simple
ou double).
                   
       
On ne peut pas toujours réduire la nouvelle expression obtenue.
c. Factoriser
Factoriser une expression, cest la transformer en produit ou en quotient.
Exemple : Factoriser         
On a une différence et il faut écrire une expression égale qui soit un produit. On utilise la distributivité en
remarquant un facteur commun à chaque terme.
             
V Substituer une valeur à une lettre
Une expression avec des lettres peut être réduite, factorisée ou développée.
Lorsquon donne une valeur à la lettre, on peut calculer la valeur de lexpression, en noubliant pas les
règles de base !
Exemple : calculer la valeur de     pour   
On remplace la lettre par sa valeur :       
(Attention à ne pas oublier que  est en réalité égal à   )
On peut alors calculer le résultat de cette expression pour   :
             
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !