e
ρ:G−→ Gl(V)G V ∗=
Hom(V, C)VC
h. , . i:V∗×V−→ C
(λ, v)7−→ hλ, vi=λ(v).
ρ•:G−→ Gl(V∗)g7−→ tρ(g)
G
ρ∗:G−→ Gl(V∗)g7−→ tρ(g−1)G
ρ
g∈G λ ∈V∗v∈Vhρ∗(g)λ, ρ(g)vi=hλ, vi
ρ∗ρ•
S2{a, b}
σ= (a7→ b, b 7→ a)ι= (a7→ a, b 7→ b)VC
{e1, e2}ρ:S2→End(V)ρ(ι) = idVρ(σ)
u e1e2
ρS2
ρ(ι)ρ(σ){e1, e2}ρ∗(ι)ρ∗(σ
{e1, e2}ρ ρ∗
V n V
h·|·i:V×V−→ Cx, x0, y ∈V a ∈C
hax +x0|yi=ahx|yi+hx0|yi,hx|yi=hy|xi.
h · | · i hx|xi ≥ 0x∈Vhx|xi>0
x∈V\ {0}
h · | ·i V x, y, y0∈V a ∈C
hx|ay +y0i=ahx|yi+hx|y0i.
ϕ:V×V→Cϕ(x, y) = Pn
i=1 xiyi, xi, yi
x y V
h·|·i V ρ :G−→ Gl(V)
G(· | · )u, v ∈V
(u|v) = 1
|G|X
g∈G
hρ(g)(u)|ρ(g)(v)i