E
k E ={m∈Z|m≡kmod n}` k n
E={m∈Z|m≡kmod `}`∈[[0, n −1]] n
n
E={m∈Z|m≡kmod k}F={m∈Z|m≡kmod `}k ` [[0, n −1]]
x∈E∩F x ≡kmod n x ≡`mod n
x n k ` k =` E =F E 6=F E ∩F=∅
m∈Zr m n m ∈ {x∈Z|x≡rmod n}
nZ
Z
Z
Z/nZn
k={m∈Z, m ≡kmod z}.Z/nZn{0, . . . , n −1}
n x +y x
y x y
x+yZ/nZX Y Z/nZ
X+Y x ∈X y ∈Y
x y
X−Y XY Z/nZ
Z Z/nZ
∀X, Y, Z ∈Z/nZ,(X+Y) + Z=X+ (Y+Z)
· ∀X, Y, Z ∈Z/nZ,(XY )Z=X(Y Z)
∀X, Y ∈Z/nZ, X +Y=Y+X
· ∀X, Y ∈Z/nZ, XY =Y X
0∀X∈Z/nZ, X + 0 = 0 + X=X
1· ∀X∈Z/nZ, X ·1 = 1 ·X=X
X−X={−x, x ∈X}n
X+ (−X) = 0
· ∀X∈Z/nZ,0·X=X·0 = 0
∀X, Y, Z ∈Z/nZ, X(Y+Z) = XY +XZ
Z1−1
3 5 3 ·2 = 6 ≡1 mod 5 3 ·2 = 1 3−1= 2
X Y 6= 0 XY = 0
Y X 0 = X−1XY = 1 ·Y=Y
Y6= 0 3 Z/6Z3·2 = 0
Z/6Z Z/7Z Z/9Z
n∈Zd∈N∗d n d n d0
n=d·d0
n1
1
d n n ≡0 mod d