(G, ∗) (H, ∗)
G
äH⊂G
ä∈H
ä∀(h, h′)∈H2, h ∗h′∈H H ∗
ä∀h∈H, h−1∈H H
(Z,+) (D,+) (Q,+)
(R,+) (C,+)
n∈N(Kn[X],+) (K[X],+)
n>2 (Un,×) (U,×)
(C∗,×)
({I2,−I2},×)
(2(R),×)
(A, +,×)A ℓ
(A, +) 0A
∃1A∈A, ∀a∈A, 1A×a=a×1A=a1A
∀a∈A, 0A×a=a×0A=a0A
∀(a, b, c)∈A3, a ×(b+c) = a×b+a×c×
+
(A, +,×)×
(Z,+,×) (D,+,×) (Q,+,×) (R,+,×) (C,+,×)
C1(R,R),+,×
C1R
RN,+,×
(K[X],+,×)
K
(2(R),+,×)
n
a b A
a×b=b×aa b
∀n∈N,(a+b)n=
n
k=0 n
kak×bn−k=
n
k=0 n
kbk×an−k
(a+b)2=a2+a×b+b×a+b2
an−bna b A
a×b=b×a
∀n∈N∗, an−bn= (a−b)×
n−1
k=0
ak×bn−1−k= (a−b)×
n−1
k=0
bk×an−1−k
(A, +,×) (A′,+,×)
A′A
(Z,+,×) (D,+,×)
(Q,+,×) (R,+,×) (C,+,×)
RN,+,× CN,+,×
(R[X],+,×) (C[X],+,×)
(A, +,×)
a A
a̸= 0A∃b∈A, b ̸= 0A, a ×b= 0A
(Z,+,×) (D,+,×) (Q,+,×) (R,+,×) (C,+,×) (K[X],+,×)
RN,+,×1+(−1)n
(2(R),+,×)A=0 1
0 0