H K (G, ⋆)H∪K
H⊂K K ⊂H
K=R C K [X]K
(K[X],+,×)K[X]Kn[X]
D D ={n
10k|n∈Z, k ∈N}D
(R,+,×)
(F(R,R),+,×)
Z[i] = {a+ib |(a, b)∈Z2}(Z[i],+,×)
Q[i] = {a+ib |(a, b)∈Q2}(Q[i],+,×)
Q(√2)a+b√2a∈Qb∈Q
Q(√2)(R,+,×)
n p n p (Un,×)
(Up,×)
(G, ∗G) (H, ∗H)
f:G−→ H
∀(g, g′)∈G2, f (g∗Gg′) = f(g)∗Hf(g′)
f
f(G) = H
fker f G Hf∗
ker f={g∈G / f (g) = H}
ker f G
fker f={G}
f f G f
f=f(G) = {h∈H / ∃g∈G, f (g) = h}
f H
f f =H
Z[i] = {a+ib |(a, b)∈Z2}Q[i] = {a+ib |(a, b)∈Q2}
N:Z[i]−→ N∀z∈Z[i], N(z) = z¯z
(z, z′)∈Z[i]2, N(zz′) = N(z)N(z′)
zZ[i]⇐⇒ N(z) = 1
Z[i]
F(Q,+,×)F=Q
∗