P= (an)n≥0
P=X
k∈N
akXk,
k∈Nakk
Pk∈NakXkPk∈NbkXk
X
k∈N
akXk=X
k∈N
bkXk⇐⇒ ∀k∈Nak=bk.
P= (an)n∈N
p∈N
P= (a0, a1, a2, . . . , ap,0,0,0, . . .)
=a0(1,0,0,0, . . .) + a1(0,1,0,0, . . .) + a2(0,0,1,0,0. . .) + ··· +ap(0,0,...,0,1
|{z}p
,0,0, . . .)
=a0+a1X+a2X2+··· +apXp
=
p
X
k=0
akXk=X
k∈N
akXk.
a= (an)b= (bn)KNλ, µ K
λu +µv
λu +µv = (λun+µvn)n∈N.
P=Pk∈NakXkQ=Pk∈NbkXkK[X]λ, µ ∈KλP +µQ
λP +µQ =X
k∈N
(λak+µbk)Xk.
P=X2+X+ 3 Q=X3−2X+ 4 2Q−P