8 Loi binomiale

publicité
8 Loi binomiale
8.1 Loi de Bernoulli
Définition : • Pour une expérience aléatoire présentant deux issues, l’une S appelée « succès » de probabilité p et l’autre S appelée « échec » de probabilité q = 1 − p, la variable
aléatoire X qui prend la valeur 1 en cas de succès et 0 en cas d’échec est appelée variable
aléatoire de Bernoulli.
• La loi de probabilité de cette variable aléatoire est appelée loi de Bernoulli de paramètre
p:
X = xi
0
1
P (X = xi ) 1 − p p
Théorème : Si la variable aléatoire X suit une loi de Bernoulli de paramètre p, alors son
espérance mathématique est égale à p : E(X) = p
Preuve : E(X) =
i=2
X
xi P (X = xi ) = 0 × (1 − p) + 1 × p = p. i=1
8.2 Loi binomiale
Définition : • L’expérience aléatoire consistant à répéter n fois de manière indépendante
une épreuve de Bernoulli de paramètre p s’appelle un schéma de Bernoulli de paramètres n
et p.
• La loi de probabilité de la variable aléatoire X égale au nombre de succès au cours de ces
n épreuves s’appelle la loi binomiale de paramètres n et p, notée B(n ; p).
Exemples : • Dans une urne contenant 3 boules blanches et 2 boules noires on considère le
tirage d’une boule blanche comme un succès. On répète 6 fois de suite la même expérience en
réintroduisant dans l’urne la boule après chaque tirage. La variable aléatoire X qui compte
le nombre de succès, c’est-à-dire
de boules blanches tirées, suit la loi binomiale de
Å le nombre
ã
3
3
paramètres n = 6 et p = : B 6 ; .
5
5
• La variable aléatoire X qui compte le nombre de « pile » Å
obtenusã lors de 20 lancers successifs
1
d’une pièce de monnaie (équilibrée) suit la loi binomiale B 20 ; .
2
Cas simples : n = 2 ou n = 3
Pour n = 2 ou n = 3 il est facile de modéliser par un arbre un tel schéma de Bernoulli de
paramètres n et p :
30
Maths 1es-1l
8. Loi binomiale
p
prog 2010
S
P (X = 2) = P ({SS}) = p2
S
P (X = 1) = P ({SS,SS}) = 2pq
S
P (X = 0) = P ({S S}) = q 2
S
p
q
p
q
S
q
S
On constate que : P (X = 2) + P (X = 1) + P (X = 0) = p2 + 2pq + q 2 = (p + q)2 = 1
p
p
S
S
q
p
q
S
S
S
q
S
p
S
q
p
S
S
P (X = 3) = P ({SSS}) = p3
q
p
S
S
P (X = 2) = P ({SSS,SSS,SSS}) = 3p2 q
q
p
S
S
q
P (X = 1) = P ({SS S,SSS,S SS}) = 3pq 2
P (X = 0) = P ({S S S}) = q 3
S
On peut vérifier que :
P (X = 3) + P (X = 2) + P (X = 1) + P (X = 0) = p3 + 3p2 q + 3pq 2 + q 3 = (p + q)3 = 1
8.3 Coefficients binomiaux
Lorsque n est supérieur le fonctionnement est identique. Pour calculer la probabilité d’obtenir
k succès sur n expériences de Bernoulli avec un paramètre p, il faut compter toutes les issues
composées de k succès et n − k échecs. D’après la propriété des arbres pondérés chacune de ces
issues a la même probabilité pk q n−k .
Définition : Soit n un entier naturel non nul et k un entier compris entre 0 et n (0 6 k 6 n).
Le nombre de chemins réalisant k succès lors de n répétitions Ç
dans
å l’arbre d’un schéma de
n
Bernoulli est appelé coefficient binomial de k parmi n et noté
.
k
Exemples : • Pour n = 2 dans l’arbre ci-dessus
• Pour n = 3 dans l’arbre ci-dessus
Ç å
3
3
= 1;
Ç å
2
2
Ç å
3
2
= 1;
= 3;
Ç å
2
1
Ç å
3
1
= 2 et
= 3 et
Ç å
2
0
Ç å
3
0
= 1.
= 1.
Calcul des coefficientsÇbinomiaux
: On
uneÇcalculatrice
(ou un tableur) pour calculer un
å
Ç utilise
å
å
10
10
10
coefficient binomial :
= 120 ;
= 252 ;
= 120.
7
5
3
Théorème : Si la variable aléatoire X suit une loi binomiale
de paramètres n et p, B(n ; p),
Ç å
n k
alors pour tout entier k, 0 6 k 6 n : P (X = k) =
p (1 − p)n−k .
k
math4bac
– 31 –
v1.618
Maths 1es-1l
8. Loi binomiale
Preuve : L’événement « X = k » comporte
Ç å
n
k
issues puisqu’il y a
k n−k
échecs. Les issues ayant toutes la même probabilité p q
prog 2010
Ç å
n
k
chemins réalisant k succès et n − k
, on obtient bien le résultat P (X = k) =
Ç å
n k n−k
p q
k
avec q = 1 − p. Exemples : • Pour 6 tirages d’une boule blanche sur 3 parmi 5, avec remise, la variable aléatoire
X égale au nombre de boules blanches tirées suit une loi binomiale. Sa loi de probabilité est
donnée par :
Ç å Å ãk Å ãn−k
2
3
6
×
, pour 0 6 k 6 n
P (X = k) =
×
5
5
k
alors :
P (X = 0) =
P (X = 1) =
P (X = 2) =
P (X = 3) =
P (X = 4) =
P (X = 5) =
P (X = 6) =
6
0
6
1
6
2
6
3
6
4
6
5
6
6
×
Ä ä0
3
5
× 0,6 ×
×
0,62
Ä ä6
2
5
0,45
×
×
= 1 × 0,46 ≈ 0,0041,
≈ 6 × 0,0061 ≈ 0,0369,
0,44
≈ 15 × 0,0092 ≈ 0,1382,
× 0,63 × 0,43 ≈ 20 × 0,0138 ≈ 0,2765,
× 0,64 × 0,42 ≈ 15 × 0,0207 ≈ 0,3110,
× 0,65 × 0,4 ≈ 6 × 0,0311 ≈ 0,1866,
× 0,66 ≈ 1 × 0,0467 ≈ 0,0467.
Théorème (admis) : Si la variable aléatoire X suit une loi binomiale de paramètres n et p,
B(n ; p), alors son espérance mathématique est E(X) = np.
Exemples : • Pour 6 tirages d’une boule blanche sur 3 parmi 5, l’espérance mathématique est
3
6 × = 3,6.
5
• Pour 20 lancers d’une pièce de monnaie, l’espérance mathématique du nombre de « pile » (ou
1
« face ») est de E(X) = 20 × = 10.
2
math4bac
– 32 –
v1.618
Téléchargement
Random flashcards
Ce que beaucoup devaient savoir

0 Cartes Jule EDOH

aaaaaaaaaaaaaaaa

4 Cartes Beniani Ilyes

découpe grammaticale

0 Cartes Beniani Ilyes

Créer des cartes mémoire