ε > 0λ2(B(0, ε)) >0B(0; ε)
R2εR2
λ2([a, b]×[c, d]) = (b−a)×(b−c).
ε > 0 0 < δ < ε
√2([−δ, δ]×[−δ, δ]) ⊂B(0, ε)
λ2
λ2([−δ, δ]×[−δ, δ]) 6λ2(B(0, ε)) ⇔(2δ)×(2δ)6λ2(B(0, ε))
λ2(B(0, ε)) >4δ2>0∀ε > 0
λ2(H1={(x, y)∈R2, x = 1}) = 0?
H1n
H1=∪n∈NHn
1, Hn
1=(x, y)∈R2x= 1 y∈[−n, n]
Hn
1ε
Hn
1=∩ε>0An
εAn
ε=(x, y)∈R2x∈]1 −ε, 1 + ε]y∈[−n, n].
λ2(An
ε) = (2n)×(2ε)=4nε ε 7→ 0
λ2(Hn
1) = λ2(∩ε>0An
ε) = lim
ε7→0λ2(An
ε) = lim
ε7→04nε = 0.
n7→ +∞
λ2(H1) = lim
n7→+∞
λ2(Hn
1)=0