f g E
V(f)V(f)f[0, π/2] f
V(f)+V(f) : x7→ π/2 V(f)(0) = 0 = V(f)(π/2)
C1V(f)V(g)
hV(f), gi=Zπ/2
0
V(f)(x)g(x)dx=V(f)(x)(V(g)(x))π/2
0
+Zπ/2
0
f(x)V(g)(x)dx
hV(f), gi=hf, V(g)i
VV
f g E
hVV(f), gi=hV(f),V(g)i=hf, VV(g)i
hVV(f), fi=0=f= 0E
hVV(f), fi= 0 0 = hV(f),V(f)i=kV(f)k2
V(f) = 0Ef= V(f)0= 0E
VV
λVVfλλ
hVV(fλ), fλi=kV(fλ)k2
V(fλ)6= 0Efλ6= 0EV(fλ)0=fλ
hVV(fλ), fλi>0
hVV(fλ), fλi=hλfλ, fλi=λkfλk2
kfλk2>0 VV
fλ=1
λVV(fλ) = 1
λV(V(fλ))
f0
λ=1
λV(fλ)f00
λ=1
λfλfλC2
fλ(π/2) = 1
λV(V(fλ))(π/2) = 0 f0
λ(0) = 1
λV(fλ)(0)
fλy00 +1
λy= 0 y(π/2) = 0 y0(0) = 0
=λVVfλλ.
λ > 0 A B R
fλ:x7→ A cos( x
λ) + B sin( x
λ)f0
λ:x7→ − A
λsin( x
λ) + B
λcos( x
λ)
0 = fλ(π/2) = A cos π
2λ+ B sin π
2λ0 = f0(0) = B
λ
B=0 fλ:x7→ A cos x
λ
fλvect x7→ A cos x
λ
A cos π
2λ=fλ(π/2) = 0
fλ6= 0EA6= 0 cos π
2λ= 0
kZπ
2λ=π
2+kπ =(2k+ 1)π
2
2λ=(2k+ 1)
2
nNλ=1
(2n+ 1)2nN2n+ 1 = |2k+ 1|
=λRnNλ=1
(2n+ 1)2f:x7→ cos( x
λ) = cos((2n+ 1)x)
x[0,π
2]
V(f)(x) = Zx
0
cos((2n+ 1)t)dt=sin((2n+ 1)t)
2n+ 1 x
0=sin((2n+ 1)x)
2n+ 1
(VV) (f)(x) = Zπ/2
x
sin((2n+ 1)t)
2n+ 1 dt=cos((2n+ 1)t)
(2n+ 1)2π/2
x=cos((2n+ 1)x)
(2n+ 1)2cos((2n+ 1)π/2)
(2n+ 1)2
(VV) (f)(x) = λf(x)
(VV) (f) = λf f 6= 0E
λVVnNλ=1
(2n+ 1)2
E1/(2n+1)2(VV) = vect x7−cos((2n+ 1)x)
Snn x k[[0, n]],P(Sn=k) = n
kxk(1 x)nk
0< k 6n kn
k=kn!
(nk)!k!=n(n1)!
(n1(k1))!(k1)! =nn1
k1
E(Sn) =
n
X
k=0
kP(Sn=k) = 0 +
n
X
k=1
kn
kxk(1 x)nk=n
n
X
k=1 n1
k1xk(1 x)nk
E(Sn) = nx
n1
X
j=0 n1
jxj(1 x)n1jj=k1
n>2E(S2
nSn) =
n
X
k=0
(k2k)P(Sn=k)
E(S2
nSn) =
n
X
k=2
k(k1)n
kxk(1 x)nk=
n
X
k=2
n(n1)n2
k2xk(1 x)nk
E(S2
nSn) = n(n1)x2
n2
X
j=0 n
jxj(1 x)n2j=n(n1)x2n= 1
E(S2
n) = E(S2
nSn) + E(Sn) = n(n1)x2+nx
V(Sn) = E(S2
n)E(Sn)2=n2x2nx2+nx (nx)2
E(Sn) = nx V(Sn) = nx(1 x)
P(|SnE(Sn)|>)6
V(Sn)
()2
V(Sn)
()2=nx(1 x)
n2α2=x(1 x)
2
x[0,1],06x(1 x)61/4
P(|SnE(Sn)|>)61
42
(|SnE(Sn)|>) = (|Snnx|>) = Sn
nx>α=[
06k6n
|k
nx|>α
(Sn=k)
P(|SnE(Sn)|>) = X
06k6n
|k
nx|>α
P(Sn=k)
X
06k6n
|k
nx|>α
n
kxk(1 x)nk61
42
Bn(f)(x) = E(f(Zn)) = E(f(Sn/n)) =
n
X
k=0
f(k
n)P(Sn=k)
Bn(f)(x) = n
kxk(1 x)nkf(k
n)
n
X
k=0 n
kxk(1 x)nkf(x) = (x+ 1 x)nf(x) = f(x)
Bn(f)(x)f(x) =
n
X
k=0 n
kxk(1 x)nkf(k
n)f(x)
ε > 0
f[0,1]
kfkf[0,1]
f α > 0y, z [0,1],|yz|< α =⇒ |f(x)f(y)|6ε
2
X
06k6n
|k
nx|
n
kxk(1 x)nkf(k
n)f(x)
6X
06k6n
|k
nx|
n
kxk(1 x)nk
f(k
n)f(x)
6X
06k6n
|k
nx|
n
kxk(1 x)nkε
2
6
n
X
k=0 n
kxk(1 x)nkε
2
X
06k6n
|k
nx|
n
kxk(1 x)nkf(k
n)f(x)
6ε
2
X
06k6n
|k
nx|>α
n
kxk(1 x)nkf(k
n)f(x)
6X
06k6n
|k
nx|>α
n
kxk(1 x)nk
f(k
n)
+|f(x)|
62kfkX
06k6n
|k
nx|>α
n
kxk(1 x)nk
X
06k6n
|k
nx|>α
n
kxk(1 x)nkf(k
n)f(x)
6kfk
22
lim
n+kfk
22= 0 N NnN, n >N =
kfk
22
6ε
2
ε > 0,NN,nN, n >N =(x[0,1],|Bn(f)(x)f(x)|6ε)
kBn(f)fk
n+0
(Bn(f))nNf[0,1]
VV(f)
p n p(X) =
n
X
n=0
akXkqk:t7→ cosk(t)
t7−p(cos(t)) vect(q0, . . . , qn)
k[[0, n]] t[0, π]
qk(t) = eit+ eit
2k
=1
2k
n
X
j=0 n
je(2jn)it=1
2kX
062j<n n
ke(2kn)it+1
2kX
n<2j62nn
je(2jn)it+r
r=((n
n/2)
2kn
0
p=nkj 2jn= 2n2pn=(2pn)
qk(t) = 1
2kX
06j<n/2n
ke(2kn)it+1
2kX
06p<n/2n
npe(2pn)it+r=1
2k1X
06k<n/2n
kcos((2kn)t) + r
qkvect(c0, c1, . . . , ck)vect(c0, c1, . . . , cp)
t7−p(cos(t)) [0, π] Fn
p k Nt[0, π]cp(t)ck(t) = cos((p+k)t) + cos((pk)t)
2
k6=p p +k > 0
hcp, ckiG=Zπ
0
cos((p+k)t) + cos((pk)t)
2dt=sin((p+k)t)
2(p+k)+sin((pk)t)
2(pk)t=π
t=0
= 0
kcpk2=hcp, cpiG=Zπ
0
cos(2pt)+1
2dt
p= 0 kc0k2=Zπ
0
1 = π
p6= 0 kcpk2=sin(2pt)
4p+t
2t=π
t=0
=π
2
αn=(1
πn= 0
q2
π
(αn)nN]0,+[N(αncn)nN
fGfvect(αncn)nNGk·kG
Arccos t[0, π]7→ cos(t)[1,1]
g=fArccos [1,1] Arccos
(gk)kN
g[1,1]
N[1,1] N(ggk)
k+0
kNfk:[0, π]R
t7−gk(cos(t))
NNfkFNfkvect(αncn)nNαn6= 0
t[0, π]|f(t)fk(t)|=|f(Arccos(cos t)) fk(Arccos(cos t))|=|g(cos(t)) gk(cos(t))|
|f(t)fk(t)|6N(ggk)
kffkk2
G=Zπ
0
(f(t)fk(t))2dt6Zπ
0
N(ggk)2dt6πN(ggk)2
kffkkG6πN(ggk)
kffkkG
k+0
vect(αncn)nNfG
,·iG
vect(αncn)nNG
(αncn)nNG
(Fn)
nNFnFn+1
kfPFn(f)kG= inf
gFnkfgkG>inf
gFn+1 kfgkG=
fPFn+1 (f)
G>0
(kfPFn(f)kG)nN
ε > 0
(fk) vect(αncn)nNfk · kG
mNkffmkG6ε
fmvect(αncn)nNNNfmvect(αncn)06n6N
1 / 11 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !