E=R2[X]ϕ:ER
ϕ(P, Q) = P(0)Q(0) + P(1)Q(1) + P(2)Q(2)
ϕ
ϕ
ϕ
PE=R2[X]ϕ(P, P ) = P(0)2+P(1)2+P(2)20
ϕ
ϕ
PE=R2[X]ϕ(P, P )=0 P(0)2+P(1)2+P(2)2= 0
P(0) = P(1) = P(2) = 0
P2ϕ
ϕ
ϕ
q ϕ q
q
E
rg(q) = 3 sgn(q) = (3,0)
F={PE / P (0) = 0}F E
F
PE=R2[X]a0, a1, a2P=a0+a1X+a2X2
PFP(0) = 0 a0+a1.0 + a2.0 = 0 a0= 0 P=a1X+a2X2PV ect(X, X2)
F=V ect(X, X2) (X, X2)
(X, X2)F
F ϕ
(X, X2)F
P1=X
kXk
ϕ(X, X) = 0.0+1.1+2.2 = 5 kXk=pϕ(X, X) = 5
P1=1
5X
P0
2=X2ϕ(X2, P1)P1
ϕ(X2, P1) = ϕµX2,1
5X=1
5ϕ(X2, X) = 1
5¡0.0 + 1.1+22.2¢=9
5
P0
2=X29
5.1
5X=X29
5X P 0
2
ϕ(P0
2, P 0
2) = 0 + µ19
52
+µ49
5.22
=16
25 +4
25 =20
25 =4
5=⇒ kP0
2k=2
5
P2=5
2µX21
5X
P1P2F ϕ
F
dim(F) + dim(F) = dim(E) dim(F) = 3 2 = 1
dim(F) = 1
P2X X2
½ϕ(P, X) = 0
ϕ(P, X2) = 0 ½0 + P(1) + 2P(2) = 0
0 + P(1) + 4P(2) = 0 ½P(1) = 0
P(2) = 0
P2
1 2
F=V ect ((X1)(X2))
E < x|y > E
f E
x, y E, < f(x)|y >=< x|f(y)>
(f) = ( (f))
x(f)y(f)f(y) = 0 zE / x =f(z)
< x|y >=< f(z)|y >=< z|f(y)>=< z|0>= 0
(f) (f)
(f)( (f))
dim( (f)) = dim(E)dim( (f))
dim ³( (f))´= dim(E)dim( (f)) (f) ( (f))
((f)( (f))
dim ( (f)) = dim ( (f))
(f) = ( (f))
E= (f) + (f)
(f) = ( (f))(f)(f) = {0}
x(f)(f)< x|x >= 0 x(f)
x(f)x= 0
(f) + (f)E(f) (f)E
dim( (f) + (f)) = dim( (f)) + dim( (f)) dim( (f)(f)) = dim( (f)) +
dim( (f)) = dim(E)
E= (f) + (f)
(f) = (f2)
x(f)f(x) = 0
f2(x) = f(f(x)) = f(0) = 0 x(f2)
x(f2)f2(x) = 0
f(x)(f)(f)f(x) = 0 x(f)
(f) = (f2)
xE < f(x)|x >= 0
xE < f(x)|x >=< x|f(x)>=< f(x)|x >
f
xE, < f(x)|x >= 0
f
λ f
x f(x) = λx
0 =< f(x)|x >=< λx|x >=λ < x|x >=λkxk2
xkxk 6= 0 λ= 0
Sp(f) = {0}
E3B= (e1, e2, e3)
E f B
A=
0pq
p0r
q r 0
f(e1) = me1+pe2+qe3(e1, e2, e3)E
< f(e1)|e1>=m , < f(e1)|e2>=p , < f(e1)|e3>=q
< f(e1)|e1>= 0 m= 0
A
f(e2) = ae1+be2+ce3
< f(e2)|e1>=a , < f(e2)|e2>=b , < f(e2)|e3>=c
< f(e2)|e2>= 0 b= 0
a=< f(e2)|e1>=< e2|f(e1)>=p a =p
r=c
f(e3) = xe1+ye2+ze3
< f(e3)|e1>=x , < f(e3)|e2>=y , < f(e3)|e3>=z
< f(e3)|e3>= 0 z= 0
x=< f(e3)|e1>=< e3|f(e1)>=q x =q
y=< f(e3)|e2>=< e3|f(e2)>=r y =r
fB
A=
0pq
p0r
q r 0
ff E
x, y E < f f(x)|y >=< x|ff(y)>
< f f(x)|y >=< f(x)|f(y)>=(< x|ff(y)>) =< x|ff(y)>
ff E
ff
λ f f x f f(x) = λx
< x|ff(x)>=
< x lambdax >=λkxk2
< f(x)|f(x)>=−kf(x)k2
λkxk20λ0
Sp(ff)R
ff
ff f
B0ff
D=
λ10
λ2
λn
λ1, . . . , λnff
D
ff f f f
u f f λ
(u, f(u))
u f f u f f(u) = λu
f
< u|f(u)>= 0
u f(u)u(u, f(u))
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !