Mouvement de rotation – vitesse et accélération angulaire

Mouvement de rotation – vitesse et accélération angulaire
Mouvement de rotation
Si la trajectoire de tous les points d’un solide sont des cercles dont les centres sont sur une même droite , alors
le solide est en mouvement de rotation autour de la droite .
Exemple : une roue est en rotation au-
tour de son axe. Cette roue effectue une
rotation autour de l’axe .
Vitesse angulaire ou fréquence de rotation
Si un point M du solide balaye entre t0et
t0+ dtun angle dθ, alors la vitesse angulaire
instantanée du solide est
Ω = dθ
dt
:vitesse angulaire en rad ·s1.
On l’apelle également fréquence de rotation.
Pour décrire la vitesse angulaire des machines tournantes, il est souvent plus commode de les exprimer en tours
par minutes. On nomme alors cette fréquence de rotation ntelle que
n=60
2π
·
Accélération angulaire
L’accélération angulaire instantanée Γest la dérivée par rapport un temps de la vitesse angulaire :
Γ = dΩ
dt
L’accélération angulaire d’exprimera donc en rad ·s2.
Applications directes de cours
Les capacités mises en œuvre ne figurent pas au programme de BTS. Les capactités travaillées n’apparaissent
donc pas sur vos grilles.
3010
Un atelier de menuiserie est équipé d’une scie circulaire d’une lame de rayon r= 30 cm. En fonctionnement,
cette lame tourne à une fréquence de rotation de 1800 tr·min1.
1. Afin que la lame atteigne sa vitesse nominale en 2 secondes, quelle doit être la valeur de son accélération
exprimée en rad ·s2?
2. La vitesse de coupe est égale à la vitesse linéaire des dents de la lame. Calculer la vitesse de coupe de la
scie.
3011
Dans une chaine de fabrication de nougats, un tapis roulant est mis en mouvement à l’aide d’une poulie de
diamètre D= 35,5 cm entraînée par un motoréducteur introduisant un rapport de réduction kr= 1600. La
fréquence de rotation nMdu moteur vaut 510 tr·min1
1. Calculer la fréquence de rotation npoulie de la poulie.
2. Déduisez en la vitesse linéaire du tapis.
3012
Un moteur électrique met deux secondes pour atteindre sa vitesse nominale de 1500 tr ·min1. On suppose
l’accélération angulaire constante.
1. Calculer la valeur de l’accélération angulaire Γ.
2. Déduisez en l’équation temporelle de la vitesse angulaire .
3. Déduisez en l’équation temporelle de l’angle θ.
4. Combien de tours à t’il effectué pendant cette phase de démarrage ?
IÉléments de réponse
ADC 3010 :Γ94,25 rad·s2;v56,5 m ·s1;
ADC 3011 :npoulie = 0,318 75 tr·min1;v5,9 mm·s135 cm·min1;
ADC 3012 :Γ78,54 rad·s2;78,54 ·tet θ39,27 ·t2; 25 tours exactement.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !